Research Article
BibTex RIS Cite

Transversal Semitotal Domination Number in Graphs

Year 2025, Issue: 52, 1 - 8, 30.09.2025
https://doi.org/10.53570/jnt.1720611

Abstract

A transversal semitotal dominating set in a graph $G$ is a subset of vertices that intersects every minimal semitotal dominating set of \( G \) and itself forms a semitotal dominating set. Among all sets that intersect each semitotal dominating set of a graph \( G \), the one with the smallest cardinality defines a key parameter in the present study. This parameter is referred to as the transversal semitotal domination number and is denoted by \( \gamma_{tt2}(G) \). This paper investigates fundamental properties of this parameter in arbitrary graphs and determines exact values of \( \gamma_{tt2}(G) \) for several standard graph classes, including complete, star, wheel, cycle, path, and complete bipartite graphs.

References

  • G. Chartrand, L. Lesniak, Graphs and digraphs, Chapman and Hall, 1996.
  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs: a comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13--22.
  • Ö. K. Kürkçü, E. Aslan, A comparison between edge neighbor rupture degree and edge scattering number in graphs, International Journal of Foundations of Computer Science 29 (07) (2018) 1119--1142.
  • E. Aslan, Ö. K. Kürkçü, Edge scattering number of gear graphs, Bulletin of The International Mathematical Virtual Institute 5 (1) (2015) 25--31.
  • T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, CRC Press, 1998.
  • E. J. Cockayne, R. W. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks 10 (3) (1980) 211--219.
  • W. Goddard, M. A. Henning, C. A. McPillan, Semitotal domination in graphs, Utilitas Mathematica 94 (2014) 67--81.
  • T. W. Haynes, M. A. Henning, Trees with unique minimum semitotal dominating sets, Graphs and Combinatorics 36 (2020) 689--702.
  • Z. Kartal, A. Aytaç, Semitotal domination of Harary graphs, Tbilisi Mathematical Journal 13 (3) (2020) 11--17.
  • Z. Kartal Yıldız, A. Aytaç, Semitotal domination of some known trees, Bulletin of the International Mathematical Virtual Institute 11 (1) (2021) 147--158.
  • B. L. Susada, R. G. Eballe, Independent semitotal domination in the join of graphs, Asian Research Journal of Mathematics 19 (3) (2023) 25--31.
  • B. L. Susada, R. G. Eballe, Independent semitotal domination in the corona of graphs, Advances and Applications in Discrete Mathematics 39 (1) (2024) 89--98.
  • N. Alon, M. R. Fellows, D. R. Hare, Vertex transversals that dominate, Journal of Graph Theory 21 (1) (1996) 21--31.
  • M. R. Fellows, Transversals of vertex partitions in graphs, SIAM Journal on Discrete Mathematics 3 (2) (1990) 206--215.
  • I. S. Hamid, Independent transversal domination in graphs, Discussiones Mathematicae Graph Theory 32 (1) (2012) 5--17.
  • A. Aytaç, C. Erkal, Independent transversal domination number in complementary prisms, Honam Mathematical Journal 43 (1) (2021) 17--25.
  • H. A. Ahangar, V. Samodivkin, I. G. Yero, Independent transversal dominating sets in graphs: Complexity and structural properties, Filomat 30 (2) (2016) 293--303.
  • N. M. G. Cotejo, E. D. Benacer, On neighbourhood transversal domination of some graphs, Advances and Applications in Discrete Mathematics 28 (2) (2021) 205--215.
  • A. C. Mart\'{ı}nez, I. Peterin, I. G. Yero, Independent transversal total domination versus total domination in trees, Discussiones Mathematicae Graph Theory 41 (1) (2021) 213--224.
  • M. A. O. Bonsocan, F. P. Jamil, Transversal hop domination in graphs, European Journal of Pure and Applied Mathematics 16 (1) (2023) 192--206.
  • M. A. O. Bonsocan, F. P. Jamil, Transversal total hop domination in graphs, Discrete Mathematics, Algorithms and Applications 16 (7) (2024) 2350095.
  • Z. Kartal Yıldız, A. Aytaç, Semitotal domination number of some graph operations, Numerical Methods for Partial Differential Equations 39 (3) (2023) 1841--1850.
  • S. R. Nayaka, A. Alwardi, Puttaswamy, Transversal domination in graphs, Gulf Journal of Mathematics 6 (2) (2018) 41--49.
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Zeliha Kartal Yıldız 0000-0001-6671-7045

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date June 16, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Kartal Yıldız, Z. (2025). Transversal Semitotal Domination Number in Graphs. Journal of New Theory(52), 1-8. https://doi.org/10.53570/jnt.1720611
AMA Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT. September 2025;(52):1-8. doi:10.53570/jnt.1720611
Chicago Kartal Yıldız, Zeliha. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory, no. 52 (September 2025): 1-8. https://doi.org/10.53570/jnt.1720611.
EndNote Kartal Yıldız Z (September 1, 2025) Transversal Semitotal Domination Number in Graphs. Journal of New Theory 52 1–8.
IEEE Z. Kartal Yıldız, “Transversal Semitotal Domination Number in Graphs”, JNT, no. 52, pp. 1–8, September2025, doi: 10.53570/jnt.1720611.
ISNAD Kartal Yıldız, Zeliha. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory 52 (September2025), 1-8. https://doi.org/10.53570/jnt.1720611.
JAMA Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT. 2025;:1–8.
MLA Kartal Yıldız, Zeliha. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory, no. 52, 2025, pp. 1-8, doi:10.53570/jnt.1720611.
Vancouver Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT. 2025(52):1-8.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).