Research Article
BibTex RIS Cite

Isoclinism and Stem Structures of 2-Groups

Year 2025, Issue: 52, 9 - 26, 30.09.2025
https://doi.org/10.53570/jnt.1726569

Abstract

This study investigates the concept of isoclinism in the category of 2-groups by extending classical group-theoretic notions to higher categorical structures. Building on the categorical equivalence between crossed modules and 2-groups, the paper characterizes isoclinism for 2-groups through commutator maps and explores its key properties. Notably, it demonstrates that isoclinism forms an equivalence relation in the category of 2-groups, similar to the group and crossed module contexts. The paper further proves that every 2-group is isoclinic to a stem 2-group and establishes that isoclinism between 2-groups implies the corresponding isoclinism between their associated crossed modules. These results contribute to the broader understanding of homotopy-theoretic and categorical classifications within algebraic topology and category theory.

References

  • P. Hall, The classification of prime-power groups, Journal Für Die Reine Und Angewandte Mathematik 182 (1940) 130–141.
  • M. Hall, J. K. Senior, The groups of order $2^n$ $(n \leq 6)$, Macmillan, 1964.
  • R. Modabbernia, Isologism, Schur-pair property and Baer-invariant of groups, World Applied Sciences Journal 16 (11) (2012) 1631–1637.
  • A. R. Salemkar, H. Bigdely, V. Alamian, Some properties on isoclinism of Lie algebras and covers, Journal of Algebra and Its Applications 7 (4) (2008) 507–516.
  • F. Parvaneh, M. R. R. Moghaddam, A. Khaksar, Some properties of n-isoclinism in Lie algebras, Italian Journal of Pure and Applied Mathematics 28 (2011) 165–176.
  • H. Mohammadzadeh, A. R. Salemkar, Z. Riyahi, Isoclinic extensions of Lie algebras, Turkish Journal of Mathematics 37 (4) (2013) 598–606.
  • J. H. C. Whitehead, Combinatorial homotopy. II, Bulletin of the American Mathematical Society 55 (5) (1949) 453–496.
  • S. Eilenberg, S. MacLane, General theory of natural equivalences, Transactions of the American Mathematical Society 58 (2) (1945) 231–294.
  • R. Brown, C. B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Indagationes Mathematicae 79 (4) (1976) 296–302.
  • O. Mucuk, T. Şahan, N. Alemdar, Normality and quotients in crossed modules and group-groupoids, Applied Categorical Structures 23 (3) (2015) 415–428.
  • K. J. Norrie, Actions and automorphisms of crossed modules, Bulletin de la Societe Mathematique de France 118 (2) (1990) 129–146.
  • A. M. Vieites, J. M. Casas, Some results on central extensions of crossed modules, Homology, Homotopy and Applications 4 (1) (2002) 29–42.
  • A. Odabaş, E. Ö. Uslu, E. Ilgaz, Isoclinism of crossed modules, Journal of Symbolic Computation 74 (2016) 408–424.
  • A. R. Salemkar, H. Mohammadzadeh, S. Shahrokhi, Isoclinism of crossed modules, Asian-European Journal of Mathematics 9 (03) (2016) 1650091.
  • E. I. Çağlayan, n-Exterior isoclinic Lie crossed modules, New Trends in Mathematical Sciences 10 (3) (2022) 44–53.
  • Z. Arvasi, E. I. Çağlayan, A. Odabaş, Commutativity degree of crossed modules, Turkish Journal of Mathematics 46 (1) (2022) 242–256.
  • Z. Arvasi, A. Odabaş, Computing exterior isoclinism of crossed modules, Turkish Journal of Mathematics 48 (6) (2024) 1024–1036.
  • R. Brown, P. J. Higgins, R. Sivera, Nonabelian algebraic topology: Filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Series of Lectures in Mathematics, European Mathematical Society, 2011.
  • S. Temel, T. Şahan, O. Mucuk, Crossed modules, double group-groupoids and crossed squares, Filomat 34 (6) (2020) 1755–1769.
There are 19 citations in total.

Details

Primary Language English
Subjects Category Theory, K Theory, Homological Algebra
Journal Section Research Article
Authors

Tunçar Şahan 0000-0002-6552-4695

Onur Soyyiğit 0000-0002-6536-5292

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date June 24, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Şahan, T., & Soyyiğit, O. (2025). Isoclinism and Stem Structures of 2-Groups. Journal of New Theory(52), 9-26. https://doi.org/10.53570/jnt.1726569
AMA Şahan T, Soyyiğit O. Isoclinism and Stem Structures of 2-Groups. JNT. September 2025;(52):9-26. doi:10.53570/jnt.1726569
Chicago Şahan, Tunçar, and Onur Soyyiğit. “Isoclinism and Stem Structures of 2-Groups”. Journal of New Theory, no. 52 (September 2025): 9-26. https://doi.org/10.53570/jnt.1726569.
EndNote Şahan T, Soyyiğit O (September 1, 2025) Isoclinism and Stem Structures of 2-Groups. Journal of New Theory 52 9–26.
IEEE T. Şahan and O. Soyyiğit, “Isoclinism and Stem Structures of 2-Groups”, JNT, no. 52, pp. 9–26, September2025, doi: 10.53570/jnt.1726569.
ISNAD Şahan, Tunçar - Soyyiğit, Onur. “Isoclinism and Stem Structures of 2-Groups”. Journal of New Theory 52 (September2025), 9-26. https://doi.org/10.53570/jnt.1726569.
JAMA Şahan T, Soyyiğit O. Isoclinism and Stem Structures of 2-Groups. JNT. 2025;:9–26.
MLA Şahan, Tunçar and Onur Soyyiğit. “Isoclinism and Stem Structures of 2-Groups”. Journal of New Theory, no. 52, 2025, pp. 9-26, doi:10.53570/jnt.1726569.
Vancouver Şahan T, Soyyiğit O. Isoclinism and Stem Structures of 2-Groups. JNT. 2025(52):9-26.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).