Isoclinism and Stem Structures of 2-Groups
Year 2025,
Issue: 52, 9 - 26, 30.09.2025
Tunçar Şahan
,
Onur Soyyiğit
Abstract
This study investigates the concept of isoclinism in the category of 2-groups by extending classical group-theoretic notions to higher categorical structures. Building on the categorical equivalence between crossed modules and 2-groups, the paper characterizes isoclinism for 2-groups through commutator maps and explores its key properties. Notably, it demonstrates that isoclinism forms an equivalence relation in the category of 2-groups, similar to the group and crossed module contexts. The paper further proves that every 2-group is isoclinic to a stem 2-group and establishes that isoclinism between 2-groups implies the corresponding isoclinism between their associated crossed modules. These results contribute to the broader understanding of homotopy-theoretic and categorical classifications within algebraic topology and category theory.
References
-
P. Hall, The classification of prime-power groups, Journal Für Die Reine Und Angewandte Mathematik 182 (1940) 130–141.
-
M. Hall, J. K. Senior, The groups of order $2^n$ $(n \leq 6)$, Macmillan, 1964.
-
R. Modabbernia, Isologism, Schur-pair property and Baer-invariant of groups, World Applied Sciences Journal 16 (11) (2012) 1631–1637.
-
A. R. Salemkar, H. Bigdely, V. Alamian, Some properties on isoclinism of Lie algebras and covers, Journal of Algebra and Its Applications 7 (4) (2008) 507–516.
-
F. Parvaneh, M. R. R. Moghaddam, A. Khaksar, Some properties of n-isoclinism in Lie algebras, Italian Journal of Pure and Applied Mathematics 28 (2011) 165–176.
-
H. Mohammadzadeh, A. R. Salemkar, Z. Riyahi, Isoclinic extensions of Lie algebras, Turkish Journal of Mathematics 37 (4) (2013) 598–606.
-
J. H. C. Whitehead, Combinatorial homotopy. II, Bulletin of the American Mathematical Society 55 (5) (1949) 453–496.
-
S. Eilenberg, S. MacLane, General theory of natural equivalences, Transactions of the American Mathematical Society 58 (2) (1945) 231–294.
-
R. Brown, C. B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Indagationes Mathematicae 79 (4) (1976) 296–302.
-
O. Mucuk, T. Şahan, N. Alemdar, Normality and quotients in crossed modules and group-groupoids, Applied Categorical Structures 23 (3) (2015) 415–428.
-
K. J. Norrie, Actions and automorphisms of crossed modules, Bulletin de la Societe Mathematique de France 118 (2) (1990) 129–146.
-
A. M. Vieites, J. M. Casas, Some results on central extensions of crossed modules, Homology, Homotopy and Applications 4 (1) (2002) 29–42.
-
A. Odabaş, E. Ö. Uslu, E. Ilgaz, Isoclinism of crossed modules, Journal of Symbolic Computation 74 (2016) 408–424.
-
A. R. Salemkar, H. Mohammadzadeh, S. Shahrokhi, Isoclinism of crossed modules, Asian-European Journal of Mathematics 9 (03) (2016) 1650091.
-
E. I. Çağlayan, n-Exterior isoclinic Lie crossed modules, New Trends in Mathematical Sciences 10 (3) (2022) 44–53.
-
Z. Arvasi, E. I. Çağlayan, A. Odabaş, Commutativity degree of crossed modules, Turkish Journal of Mathematics 46 (1) (2022) 242–256.
-
Z. Arvasi, A. Odabaş, Computing exterior isoclinism of crossed modules, Turkish Journal of Mathematics 48 (6) (2024) 1024–1036.
-
R. Brown, P. J. Higgins, R. Sivera, Nonabelian algebraic topology: Filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Series of Lectures in Mathematics, European Mathematical Society, 2011.
-
S. Temel, T. Şahan, O. Mucuk, Crossed modules, double group-groupoids and crossed squares, Filomat 34 (6) (2020) 1755–1769.