Research Article
BibTex RIS Cite

Source of $\Gamma$-Semigroups' Primeness

Year 2025, Issue: 52, 27 - 37, 30.09.2025
https://doi.org/10.53570/jnt.1732995

Abstract

This study aims to define the source of a $\Gamma$-semigroup $S$'s primeness and to research some of its basic properties and the $P_{S_{\Gamma}}$ subset of S as $P_{S_{\Gamma}}=\{b\in S : S\Gamma S \Gamma b=(0)\}$, for the $\Gamma$-semigroup $S$ with zero. Afterward, it investigates the relationships between $\lvert P_{S_{\Gamma}}\rvert$-reduced, $\lvert P_{S_{\Gamma}}\rvert$-idempotent, $\lvert P_{S_{\Gamma}}\rvert$-strongly idempotent, and $\lvert P_{S_{\Gamma}}\rvert$-regular $\Gamma$-semigroup structures as follows: (\emph{i}) If $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-idempotent $\Gamma$-semigroup, then $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-regular $\Gamma$-semigroup, (\emph{ii}) If $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-idempotent $\Gamma$-semigroup, then $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-reduced $\Gamma$-semigroup, (\emph{iii}) If $S$ is an idempotent (regular, reduced) $\Gamma$-semigroup, then $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-idempotent (regular, reduced) $\Gamma$-semigroup, (\emph{iv}) If $S$ is a $\lvert P_{S_{\Gamma}}\rvert$- strongly idempotent (regular) $\Gamma$-semigroup, then $A$ is a $\lvert P_{A_{\Gamma}}\rvert$- strongly idempotent (regular) $\Gamma$-semigroup, and (\emph{v}) If $S$ is a commutative $\lvert P_{S_{\Gamma}}\rvert$-regular $\Gamma$-semigroup, then $S$ is a $\lvert P_{S_{\Gamma}}\rvert$-reduced $\Gamma$-semigroup. Moreover, this study explores the connections between the source of $\Gamma$-primeness of a $\Gamma$-semigroup and the aforementioned $\Gamma$-semigroup structures and clarifies some theoretical parts of the study with several examples.

References

  • M. Bajrami, R. Ramani-Halili, Completely prime ideals of semigroups, Journal of Natural Sciences and Mathematics of UT 5 (9-10) (2020) 134--139.
  • A. Z. Ansari, F. Shujat, A. Fallatah, Generalized differential identities on prime rings and algebras, AIMS Mathematics 8 (10) (2023) 22758--22765.
  • A. Z. Ansari, F. Shujat, A. Kamel, A. Fallatah, Jordan $\varphi $-centralizers on semiprime and involution rings, European Journal of Pure and Applied Mathematics 18 (1) (2025) 5493.
  • T. K. Dutta, S. Chattopadhyay, On uniformly strongly prime $\Gamma$-semigroup, Scientific Annals of Alexandru Ioan Cuza University 52 (1) (2006) 325--335.
  • M. F. Hoque, A. C. Paul, On centralizers of semiprime gamma rings, In International Mathematical Forum 6 (13) (2011) 627--638.
  • C. Selvaraj, S. Petchimuthu, On strongly prime gamma rings, International Journal of Algebra 2 (19) (2008) 933--943.
  • N. Aydın, Ç. Demir, D. Karalarlıoğlu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083--1096.
  • O. Arslan, N. Düzkaya, The source of semi-primeness of $\Gamma$-rings, Fundamentals of Contemporary Mathematical Sciences 4 (2) (2023) 87--95.
  • B. Albayrak, D. Yeşil, D. Karalarlıoğlu Camcı, The source of semiprimeness of semigroups, Journal of Mathematics 2021 (2021) 659756.
  • D. Yeşil, R. Mekera, D. Karalarlıoğlu Camcı, The source of $\Gamma $-semiprimeness on $\Gamma $-semigroups, Turkish Journal of Mathematics and Computer Science 17 (1) (2025) 10--16.
  • D. Yeşil, D. Karalarlıoğlu Camcı, The source of primeness of rings, Journal of New Theory (41) (2022) 100--104.
  • N. K. Saha, $\Gamma$-Semigroup, Doctoral Dissertation Calcutta University (1989) Kolkata.
  • M. K. Sen, On $\Gamma$-semigroup, in: Procedings of International Conference on Algebra and Its Applications, Decker Publication, New York, 1981, pp. 301--308.
  • N. Kehayopulu, Green's relations and the relation $N$ in $\Gamma$-semigroups, Quasigroups and Related Systems 22 (1) (2014) 89--96.
  • S. Savithri, A. G. Rao, L. Achala, J. M. Pradeep, $\Gamma$-semigroups in which primary $\Gamma$-ideals are prime and maximal, International Journal of Scientific and Innovative Mathematical Research 5 (7) (2017) 36--43.
  • M. K. Sen, N. K. Saha, Orthodox $\Gamma$-semigroups, International Journal of Mathematics and Mathematical Sciences 13 (3) (1990) 527--534.
  • M. Siripitukdet, A. Iampan, On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups, Thai Journal of Mathematics 4 (2) (2006) 403--415.
  • D. M. Rao, A. Anjaneyulu, A. G. Rao, Pseudo symmetric $\Gamma$-ideals in $\Gamma$-semigroups, International eJournal of Mathematics and Engineering 116 (2011) 1074--1081.
  • D. M. Rao, Theory of $\Gamma$-ideals in $\Gamma$-semigroups, Doctoral Dissertation Acharya Nagarjuna University (2011) Guntur.
  • S. Chattopadhyaya, On right inverse $\Gamma $-semigroup, Konuralp Journal of Mathematics 3 (2) (2015) 140--151.
  • V. Jyothi, Theory of radicals and 2primal $\Gamma$-semigroups, Doctoral Dissertation Koneru Lakshmaiah Education Foundation (2018) Guntur.
  • V. Jyothi, Y. Sarala, R. D. Madhusudhana, R. R. Nageswara, Strongly prime $\Gamma$-semigroup, International Journal of Chemical Sciences 15 (4) (2017) 206.
  • S. Chattopadhyay, S. Kar, On structure space of $\Gamma$-semigroups, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47 (1) (2008) 37--46.
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Didem Yeşil 0000-0003-0666-9410

Rasie Mekera 0000-0002-0092-2991

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date July 2, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Yeşil, D., & Mekera, R. (2025). Source of $\Gamma$-Semigroups’ Primeness. Journal of New Theory(52), 27-37. https://doi.org/10.53570/jnt.1732995
AMA Yeşil D, Mekera R. Source of $\Gamma$-Semigroups’ Primeness. JNT. September 2025;(52):27-37. doi:10.53570/jnt.1732995
Chicago Yeşil, Didem, and Rasie Mekera. “Source of $\Gamma$-Semigroups’ Primeness”. Journal of New Theory, no. 52 (September 2025): 27-37. https://doi.org/10.53570/jnt.1732995.
EndNote Yeşil D, Mekera R (September 1, 2025) Source of $\Gamma$-Semigroups’ Primeness. Journal of New Theory 52 27–37.
IEEE D. Yeşil and R. Mekera, “Source of $\Gamma$-Semigroups’ Primeness”, JNT, no. 52, pp. 27–37, September2025, doi: 10.53570/jnt.1732995.
ISNAD Yeşil, Didem - Mekera, Rasie. “Source of $\Gamma$-Semigroups’ Primeness”. Journal of New Theory 52 (September2025), 27-37. https://doi.org/10.53570/jnt.1732995.
JAMA Yeşil D, Mekera R. Source of $\Gamma$-Semigroups’ Primeness. JNT. 2025;:27–37.
MLA Yeşil, Didem and Rasie Mekera. “Source of $\Gamma$-Semigroups’ Primeness”. Journal of New Theory, no. 52, 2025, pp. 27-37, doi:10.53570/jnt.1732995.
Vancouver Yeşil D, Mekera R. Source of $\Gamma$-Semigroups’ Primeness. JNT. 2025(52):27-3.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).