Research Article
BibTex RIS Cite

A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow

Year 2025, Issue: 52, 38 - 51, 30.09.2025
https://doi.org/10.53570/jnt.1733901

Abstract

This study presents a new approach to solving magnetohydrodynamic (MHD) flow problems in complex geometries using a polynomial-based Radial Basis Function-Generated Finite Difference (RBF-FD) method within a non-overlapping domain decomposition framework. It partitions the domain, specifically an L-shaped cavity with a single lid-driven, into simpler subregions where classical finite difference methods are applied, and employs the method RBF-FD at the interface points. Unlike traditional RBF approaches that require mostly shape parameter optimization, this study uses a polynomial basis function to determine derivative weights. It validates the method on benchmark lid-driven cavity problems and extends it to analyze MHD flows under various magnetic field strengths $M\in\{10,50,100\}$ and orientations $\alpha\in\{0^\circ,45^\circ,90^\circ,135^\circ,180^\circ\}$. The computational results illustrate the influence of magnetic field angle and cavity aspect ratio $\left(h_1,h_2\right)$ on vortex formation, revealing complex bifurcation behaviors unique to L-shaped geometries.

Supporting Institution

Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University

Project Number

FHD-2024-4633

Thanks

This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FHD-2024-4633.

References

  • M. Gürbüz-Çaldağ, E. Çelik, Stokes flow in lid-driven cavity under inclined magnetic field, Archives of Mechanics 74 (6) (2022) 549–564.
  • Ö. Oruç, A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov-Rubenchik equations, Applied Mathematics and Computation 394 (2021) 125787.
  • R. Zamolo, E. Nobile, Solution of incompressible fluid flow problems with heat transfer by means of an efficient RBF-FD meshless approach, Numerical Heat Transfer, Part B: Fundamentals 75 (1) (2019) 19–42.
  • G. B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, Journal of Computational Physics 212 (1) (2006) 99–123.
  • P. P. Chinchapatnam, K. Djidjeli, P. B. Nair, M. Tan, A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223 (3) (2009) 275–290.
  • M. Prasanna Jeyanthi, S. Ganesh, Numerical solution of steady MHD duct flow in a square annulus duct under strong transverse magnetic field, International Journal of Ambient Energy 43 (1) (2022) 2816–2823.
  • T. Chu, O. T. Schmidt, RBF-FD discretization of the Navier-Stokes equations on scattered but staggered nodes, Journal of Computational Physics 474 (2023) 111756.
  • C. Rodighiero, L. M. De Socio, Some aspects of natural convection in a corner, ASME Journal of Heat and Mass Transfer 105 (1) (1983) 212–214.
  • S. Mahmud, Free convention inside an L-shaped enclosure, International Communications in Heat and Mass Transfer 29 (7) (2002) 1005–1013.
  • D.-H. Kim, P. J. Lynett, Dispersive and nonhydrostatic pressure effects at the front of surge, Journal of Hydraulic Engineering 137 (7) (2011) 754–765.
  • H. M. Kalita, A new total variation diminishing predictor corrector approach for two-dimensional shallow water flow, Water Resources Management 30 (4) (2016) 1481–1497.
  • S. Kajiwara, Numerical simulation and experimental validation of the hydraulic L-shaped check ball behavior, World Academy of Science, Engineering and Technology [Mechanical and Mechatronics Engineering] 9 (2) (2015) 308–311.
  • H. Alotaibi, C. Abeykoon, C. Soutis, M. Jabbari, Numerical simulation of two-phase flow in liquid composite moulding using VOF-based implicit time-stepping scheme, Journal of Composites Science 6 (11) (2022) 330.
  • S. R. Bhopalam, D. A. Perumal, Numerical analysis of fluid flows in L-shaped cavities using Lattice Boltzmann method, Applications in Engineering Science 3 (2020) 100016.
  • A. J. Chamkha, J. Ghasem, M. A. Ismael, R. Ghasemiasl, T. Armaghani, Thermal and entropy analysis in L-shaped non-Darcian porous cavity saturated with nanofluids using Buongiorno model: Comparative study, Mathematical Methods in the Applied Sciences (Special Issue) (2020) 1–16.
  • S. E. Ahmed, M. Mansour, A. M. Alwatban, A. M. Aly, Finite element simulation for MHD ferro-convective flow in an inclined double-lid driven L-shaped enclosure with heated corners, Alexandria Engineering Journal 59 (1) (2020) 217–226.
  • F. Selimefendigil, H. F. Öztop, MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation, Physica A: Statistical Mechanics and its Applications 534 (2019) 122144.
  • T. Armaghani, M. Sadeghi, A. M. Rashad, M. A. Mansour, A. J. Chamkha, A. Dogonchi, H. A. Nabwey, MHD mixed convection of localized heat source/sink in an Al2O3-Cu/water hybrid nanofluid in L-shaped cavity, Alexandria Engineering Journal 60 (3) (2021) 2947–2962.
  • E. Çelik, M. Gürbüz-Çaldağ, Solution of MHD-stokes flow in an L-shaped cavity with a local RBF-supported finite difference, Engineering Analysis with Boundary Elements 158 (2024) 356–363.
  • A. Marjamaki, P. Rasilo, Domain decomposition technique with subdomain pre-processing in 2D simulations of wireless power transfer, IEEE Transactions on Magnetics 56 (4) (2020) 7515104.
  • H. Deng, J. Li, J. Huang, Y. Zou, Y. Liu, Y. Chen, Y. Zheng, X. Mao, Dual domain decomposition method for high-resolution 3D simulation of groundwater flow and transport, Water 16 (13) (2024) 1864.
  • H. S. Tang, R. D. Haynes, G. Houzeaux, A review of domain decomposition methods for simulation of fluid flows: Concepts, algorithms, and applications, Archives of Computational Methods in Engineering 28 (3) (2021) 841–873.
  • V. Khaidurov, V. Tatenko, M. Lytovchenko, T. Tsiupii, T. Zhovnovach, Acceleration of computations in modelling of processes in complex objects and systems, System Research in Energy 77 (2) (2024) 58–70.
  • D. K. Swamy, R. P. Singh, B. Kaushik, Domain decomposition method for a class of singularly perturbed differential-difference equations, Advances in Nonlinear Variational Inequalities 26 (2) (2023) 54–68.
  • M. J. Kazemzadeh-Parsi, A. Ammar, F. Chinesta, Domain decomposition involving subdomain separable space representations for solving parametric problems in complex geometries, Advanced Modeling and Simulation in Engineering Sciences 9 (2022) 2.
  • C. Chniti, F. Nataf, F. Nier, Improved interface conditions for a non-overlapping domain decomposition of a non-convex polygonal domain, Comptes Rendus Mathématique 342 (11) (2006) 883–886.
  • C. Chniti, F. Nataf, F. Nier, Improved interface conditions for 2D domain decomposition with corners: Numerical applications, Journal of Scientific Computing 38 (2) (2009) 207–228.
  • D. Funaro, A. Quarteroni, P. Zanolli, An iterative procedure with interface relaxation for domain decomposition methods, SIAM Journal on Numerical Analysis 25 (6) (1988) 1213–1236.
  • G. E. Fasshauer, J. G. Zhang, On choosing “optimal” shape parameters for RBF approximation, Numerical Algorithms 45 (2007) 345–368.
  • C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constructive Approximation 2 (1) (1986) 11–22.
  • P. P. Chinchapatnam, K. Djidjeli, P. B. Nair, Radial basis function meshless method for the steady incompressible Navier-Stokes equations, International Journal of Computer Mathematics 84 (10) (2007) 1509–1521.
  • M. Mongillo, Choosing basis functions and shape parameters for radial basis function methods, SIAM Undergraduate Research Online 4 (2011) 190–209.
  • S. S. S. Ghalichi, M. Amirfakhrian, T. Allahviranloo, An algorithm for choosing a good shape parameter for radial basis functions method with a case study in image processing, Results in Applied Mathematics 16 (2022) 100337.
  • J. A. Koupaei, M. Firouznia, S. M. M. Hosseini, Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm, Alexandria Engineering Journal 57 (4) (2018) 3641–3652.
  • L.-H. Kuo, On the selection of a good shape parameter for RBF approximation and its application for solving PDEs, Doctoral Dissertation, The University of Southern Mississippi (2015) Hattiesburg.
  • C.-S. Liu, D. Liu, Optimal shape parameter in the MQ-RBF by minimizing an energy gap functional, Applied Mathematics Letters 86 (2018) 157–165.
  • S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Advances in Computational Mathematics 11 (2-3) (1999) 193–210.
  • V. Skala, S. A. A. Karim, M. Zabran, Radial basis function approximation optimal shape parameters estimation, in: V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, J. Teixeira (Eds.), Computational Science – ICCS 2020, Springer, Amsterdam, 2020, pp. 309–317.
  • J. Wang, G. Liu, On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Computer Methods in Applied Mechanics and Engineering 191 (23-24) (2002) 2611–2630.
  • B. Fornberg, N. Flyer, A primer on radial basis functions with applications to the geosciences, Society for Industrial and Applied Mathematics, 2015.
  • E. Larsson, E. Lehto, A. Heryudono, B. Fornberg, Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM Journal on Scientific Computing 35 (2013) A2096–A2119.
  • M. Gürbüz, M. Tezer-Sezgin, MHD Stokes flow in lid-driven cavity and backward-facing step channel, European Journal of Computational Mechanics 24 (6) (2015) 279–301.
  • H. Yosinobu, T. Kakutani, Two-dimensional Stokes flow of an electrically conducting fluid in a uniform magnetic field, Journal of the Physical Society of Japan 14 (10) (1959) 1433–1444.
  • N. Flyer, G. A. Barnett, L. J. Wicker, Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations, Journal of Computational Physics 316 (2016) 39–62.
  • U. Ghia, K. Ghia, C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics 48 (3) (1982) 387–411.
  • A. Deliceoğlu, S. Han Aydın, Topological flow structures in an L-shaped cavity with horizontal motion of the upper lid, Journal of Computational and Applied Mathematics 259 (Part B) (2014) 937–943.
There are 46 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other)
Journal Section Research Article
Authors

Ebutalib Çelik 0000-0002-4500-4465

Project Number FHD-2024-4633
Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date July 3, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Çelik, E. (2025). A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow. Journal of New Theory(52), 38-51. https://doi.org/10.53570/jnt.1733901
AMA Çelik E. A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow. JNT. September 2025;(52):38-51. doi:10.53570/jnt.1733901
Chicago Çelik, Ebutalib. “A Hybrid Finite Difference-RBF Method With Polynomial Approach and an Application to MHD Flow”. Journal of New Theory, no. 52 (September 2025): 38-51. https://doi.org/10.53570/jnt.1733901.
EndNote Çelik E (September 1, 2025) A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow. Journal of New Theory 52 38–51.
IEEE E. Çelik, “A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow”, JNT, no. 52, pp. 38–51, September2025, doi: 10.53570/jnt.1733901.
ISNAD Çelik, Ebutalib. “A Hybrid Finite Difference-RBF Method With Polynomial Approach and an Application to MHD Flow”. Journal of New Theory 52 (September2025), 38-51. https://doi.org/10.53570/jnt.1733901.
JAMA Çelik E. A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow. JNT. 2025;:38–51.
MLA Çelik, Ebutalib. “A Hybrid Finite Difference-RBF Method With Polynomial Approach and an Application to MHD Flow”. Journal of New Theory, no. 52, 2025, pp. 38-51, doi:10.53570/jnt.1733901.
Vancouver Çelik E. A Hybrid Finite Difference-RBF Method with Polynomial Approach and an Application to MHD Flow. JNT. 2025(52):38-51.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).