Research Article
BibTex RIS Cite

Fixed Points of Multivalued Mappings on $S$-Metric Spaces

Year 2025, Issue: 52, 52 - 60, 30.09.2025
https://doi.org/10.53570/jnt.1745667

Abstract

In the present study, an extension of Bollenbacher and Hicks's fixed point theorem, which is a version of Caristi's fixed point theorem, is proved for the context of multivalued mappings in $S$-metric spaces. Several significant results are derived from this extension. Moreover, it has been shown that various fixed point theorems for single-valued mappings can be derived as special cases from the main theorem.

References

  • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the American Mathematical Society 215 (1976) 241--251.
  • I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications 47 (2) (1974) 324--353.
  • D. Downing, W. A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific Journal of Mathematics 69 (2) (1977) 339--346.
  • J. R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, Journal of Mathematical Analysis and Applications 227 (1998) 55--67.
  • M. A. Khamsi, Remarks on Caristi's fixed point theorem, Nonlinear Analysis: Theory, Methods and Applications 71 (1-2) (2009) 227--231.
  • W.-S. Du, On Caristi-type mappings without lower semicontinuity assumptions, Journal of Fixed Point Theory Applications 17 (2015) 733--752.
  • S. Cobzaş, Fixed points and completeness in metric and generalized metric spaces, Journal of Mathematical Sciences 250 (2020) 475--535.
  • W. Kozlowski, A purely metric proof of the Caristi fixed point theorem, Bulletin of the Australian Mathematical Society 95 (2017) 333--337.
  • S. Romaguera, A theorem of Caristi-Kirk type for $b$-metric spaces, Fixed Point Theory 25 (1) (2024) 371--378.
  • A. Bollenbacher, T. L. Hicks, A fixed point theorem revisited, Proceedings of the American Mathematical Society 102 (4) (1988) 898--900.
  • I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Functional Analysis 30 (1989) 26-37.
  • S. Czerwick, Contraction mappings in b-metric space, Acta Mathematica et Informatica Universitatis Ostraviensis 01 (1) (1993) 5--11.
  • S. Agrowal, P. Sanodia, A fixed point theorem on b-metric space, International Journal of Mathematics Trends and Techonology 66 5 (2020) 192--194.
  • S. Gahler, 2-metrische raume und ihre topologische strüktür, Mathematische Nachrichten 26 (1963) 115--118.
  • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7 (2) (2006) 289--297.
  • S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory and Applications 2007 (2007) 27906.
  • S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994) 183--197.
  • S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Matematički Vesnik 64 (3) (2012) 258--266.
  • H. Karayılan, Some results on fixed point of function in $S$-metric spaces, in: P. Tsankov (Ed.), International Scientific Conference, Gabrova, 2023, pp. II-42--45.
  • H. Karayılan, Some results on related fixed point theorems in two $S$-metric spaces, Journal of New Theory (46) (2024) 110--117.
  • S. Sedghi, N. V. Dung, Fixed point theorems on $S$-metric spaces, Matematički Vesnik 66 (1) (2014) 113--124.
  • L. B. Ćirić, Fixed point for generalized multi-valued contractions, Matematički Vesnik 24 (9) (1972) 265--272.
  • T. Hicks, B. Rhoades, A Banach type fixed point theorem, Mathematica Japonica 24 (3) (1979) 327--330.
There are 23 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Hakan Karayılan 0000-0002-0266-8106

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date July 18, 2025
Acceptance Date September 7, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Karayılan, H. (2025). Fixed Points of Multivalued Mappings on $S$-Metric Spaces. Journal of New Theory(52), 52-60. https://doi.org/10.53570/jnt.1745667
AMA Karayılan H. Fixed Points of Multivalued Mappings on $S$-Metric Spaces. JNT. September 2025;(52):52-60. doi:10.53570/jnt.1745667
Chicago Karayılan, Hakan. “Fixed Points of Multivalued Mappings on $S$-Metric Spaces”. Journal of New Theory, no. 52 (September 2025): 52-60. https://doi.org/10.53570/jnt.1745667.
EndNote Karayılan H (September 1, 2025) Fixed Points of Multivalued Mappings on $S$-Metric Spaces. Journal of New Theory 52 52–60.
IEEE H. Karayılan, “Fixed Points of Multivalued Mappings on $S$-Metric Spaces”, JNT, no. 52, pp. 52–60, September2025, doi: 10.53570/jnt.1745667.
ISNAD Karayılan, Hakan. “Fixed Points of Multivalued Mappings on $S$-Metric Spaces”. Journal of New Theory 52 (September2025), 52-60. https://doi.org/10.53570/jnt.1745667.
JAMA Karayılan H. Fixed Points of Multivalued Mappings on $S$-Metric Spaces. JNT. 2025;:52–60.
MLA Karayılan, Hakan. “Fixed Points of Multivalued Mappings on $S$-Metric Spaces”. Journal of New Theory, no. 52, 2025, pp. 52-60, doi:10.53570/jnt.1745667.
Vancouver Karayılan H. Fixed Points of Multivalued Mappings on $S$-Metric Spaces. JNT. 2025(52):52-60.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).