Research Article
BibTex RIS Cite

TÜRKİYE’DE ENDÜSTRİ 4.0'IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ

Year 2024, Volume: 7 Issue: 1, 51 - 67, 19.07.2024
https://doi.org/10.46238/jobda.1215803

Abstract

Günümüzde dijital teknolojiler ve Yapay Zeka ile önem kazanan Endüstri 4.0, üç boyutlu üretim de dahil olmak üzere kişiye özel üretimi mümkün kılarak maliyetleri düşürmektedir. Kalite arttmakta, müşteri memnuniyetini sağlanmakta ve çevre korumaktadır. Endüstri 4.0 iş sağlığı ve güvenliğinde de dönüşümü sağlayarak güvenlik yaklaşımlarını değiştirmektedir. Tüm bu olumlu avantajlarına rağmen, günümüzde halen Endüstri 4.0'ın uygulamalarının önünde engeller bulunmaktadır. Bu çalışma, Türkiye Cumhuriyeti’nde Endüstri 4.0'ın uygulanmasını zorlaştıracak potansiyel engelleri tespit etmeyi ve analiz etmeyi amaçlamıştır. Bu makalede, “Türkiye” kelimesi, Türkiye Cumhuriyeti anlamına gelmektedir. Kapsamlı literatür taramasının ardından sektör uzmanlarının görüşleri de alınarak engeller belirlenmiştir. Bu engeller üretim altyapısı, kurulum maliyeti, dijital veri koruması, güvenlik prosedürleri, veri kullanım zorlukları, ürünlerin belirsiz değerleri, kâr belirsizliği, deneyimli işgücü eksikliği, üretim kesintileri, değişime direnç, devlet desteği, makinelere artan bağımlılık, mevzuat ve hükümet politikası olarak tespit edilmiştir. Tanımlanan engeller arasında hiyerarşik bir yapı geliştirmek için yorumlayıcı yapısal modelleme (ISM) ve MICMAC analizi kullanılmıştır. Ayrıca, Türkiye’de Endüstri 4.0'a geçiş yapacak işletmeler için önerilerde bulunulmuştur.

Thanks

Çalışmamızın, değerlendirilmesini saygılarımızla arz ederiz.

References

  • AbouRizk, S. (2010). Role of simulation in construction engineering and management. Journal of construction engineering and management, 136(10), 1140-1153.
  • Aggarwal, A., Gupta, S., & Ojha, M. K. (2019). Evaluation of key challenges to industry 4.0 in Indian context: a DEMATEL approach. In Advances in Industrial and Production Engineering (pp. 387-396). Springer, Singapore.
  • Azevedo, S. G., Sequeira, T., Santos, M., & Mendes, L. (2019). Biomass-related sustainability: A review of the literature and interpretive structural modeling. Energy, 171, 1107-1125.
  • Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia manufacturing, 13, 1245-1252.
  • Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15-16), 4719-4742.
  • Braaksma, A. J., Klingenberg, W. W., & van Exel, P. P. (2011). A review of the use of asset information standards for collaboration in the process industry. Computers in industry, 62(3), 337-350.
  • Calabrese, A., Levialdi Ghiron, N., & Tiburzi, L. (2021). ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: a literature review, a multiple case study, and a conceptual framework. Production Planning & Control, 32(3), 213-227.
  • Chauhan, C., Singh, A., & Luthra, S. (2021). Barriers to industry 4.0 adoption and its performance implications: An empirical investigation of emerging economy. Journal of Cleaner Production, 285, 124809.
  • Cherrafi, A., Elfezazi, S., Garza-Reyes, J. A., Benhida, K., & Mokhlis, A. (2017). Barriers in Green Lean implementation: a combined systematic literature review and interpretive structural modelling approach. Production Planning & Control, 28(10), 829-842.
  • Cozmiuc, D., & Petrisor, I. (2018). Industrie 4.0 by siemens: steps made next. Journal of Cases on Information Technology (JCIT), 20(1), 31-45.
  • Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technological Forecasting and Social Change, 168, 120756.
  • Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of production economics, 204, 383-394.
  • Dalmarco, G., & Barros, A. C. (2018). Adoption of Industry 4.0 technologies in supply chains. In Innovation and Supply Chain Management (pp. 303-319). Springer, Cham.
  • Elhusseiny, H. M., & Crispim, J. (2022). SMEs, Barriers and Opportunities on adopting Industry 4.0: A Review. Procedia Computer Science, 196, 864-871.
  • Errandonea, I., Beltrán, S., & Arrizabalaga, S. (2020). Digital Twin for maintenance: A literature review. Computers in Industry, 123, 103316.
  • Fathi, M., & Ghobakhloo, M. (2020). Enabling mass customization and manufacturing sustainability in industry 4.0 context: a novel heuristic algorithm for in-plant material supply optimization. Sustainability, 12(16), 6669.
  • Flatt, H., Schriegel, S., Jasperneite, J., Trsek, H., & Adamczyk, H. (2016, September). Analysis of the Cyber-Security of industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-4). IEEE.
  • Fotland, G., Haskins, C., & Rølvåg, T. (2020). Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels. Systems Engineering, 23(2), 177-188.
  • Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26.
  • Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
  • Frederico, G. F., Garza-Reyes, J. A., Anosike, A., & Kumar, V. (2019). Supply Chain 4.0: concepts, maturity and research agenda. Supply Chain Management: An International Journal.
  • Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE access, 8, 108952-108971.
  • Gardas, B. B., Raut, R. D., & Narkhede, B. (2019). Determinants of sustainable supply chain management: A case study from the oil and gas supply chain. Sustainable Production and Consumption, 17, 241-253.
  • Ghadge, A., Kara, M. E., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management.
  • Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of manufacturing technology management.
  • Ghobakhloo, M. (2020). Determinants of information and digital technology implementation for smart manufacturing. International Journal of Production Research, 58(8), 2384-2405.
  • Glass, R., Meissner, A., Gebauer, C., Stürmer, S., & Metternich, J. (2018). Identifying the barriers to Industrie 4.0. Procedia Cirp, 72, 985-988.
  • Hertzum, M. (2014). Expertise seeking: A review. Information processing & management, 50(5), 775-795. Ho, G. T., Tang, Y. M., Tsang, K. Y., Tang, V., & Chau, K. Y. (2021). A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Systems with Applications, 179, 115101.
  • Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities?. Technological forecasting and social change, 146, 119-132.
  • Hsu, Y., Chiu, J. M., & Liu, J. S. (2019, December). Digital twins for industry 4.0 and beyond. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 526-530). IEEE.
  • Hussain, M., Awasthi, A., & Tiwari, M. K. (2016). Interpretive structural modeling-analytic network process integrated framework for evaluating sustainable supply chain management alternatives. Applied Mathematical Modelling, 40(5-6), 3671-3687.
  • Kagermann, D., Wahlster, W., & Helbig, J. (2013). Securing the Future of German Manufacturing Industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Final Report of the Industrie 4.0 Working Group, retrieved April 5, 2015.
  • Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.
  • Kamble, S. S., Gunasekaran, A., & Sharma, R. (2018). Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Computers in Industry, 101, 107-119.
  • Kamble, S. S., Gunasekaran, A., Parekh, H., & Joshi, S. (2019). Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, 48, 154-168.
  • Karadayi-Usta, S. (2019). An Interpretive Structural Analysis for Industry 4.0 Adoption Challenges. IEEE Transactions on Engineering Management, 67(3), 973–978.
  • Kergroach, S. (2017). Industry 4.0: New challenges and opportunities for the labour market. Форсайт, 11(4 (eng)), 6-8.
  • Khan, A., & Turowski, K. (2016). A survey of current challenges in manufacturing industry and preparation for industry 4.0. In Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry”(IITI’16) (pp. 15-26). Springer, Cham.
  • Khan, U., & Haleem, A. (2015). Improving to smart organization: an integrated ISM and fuzzy-MICMAC modelling of barriers. Journal of Manufacturing Technology Management.
  • Kiel, D., Arnold, C., & Voigt, K. I. (2017). The influence of the Industrial Internet of Things on business models of established manufacturing companies–A business level perspective. Technovation, 68, 4–19.
  • Kiraz, A., Canpolat, O., ¨Ozkurt, C., & Tas¸kın, H. (2020). Analysis of the factors affecting the Industry 4.0 tendency with the structural equation model and an application. Computers & Industrial Engineering, 150, Article 106911.
  • Kockmann, N. (2019). Digital methods and tools for chemical equipment and plants. Reaction Chemistry & Engineering, 4(9), 1522-1529.
  • Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016-1022.
  • Kumar, P., Bhamu, J., & Sangwan, K. S. (2021). Analysis of barriers to Industry 4.0 adoption in manufacturing organizations: An ISM approach. Procedia CIRP, 98, 85-90.
  • Kumar, P., Singh, R. K., & Kumar, V. (2021). Managing supply chains for sustainable operations in the era of industry 4.0 and circular economy: Analysis of barriers. Resources, Conservation and Recycling, 164, 105215.
  • Kumar, S., Raut, R. D., Nayal, K., Kraus, S., Yadav, V. S., & Narkhede, B. E. (2021). To identify industry 4.0 and circular economy adoption barriers in the agriculture supply chain by using ISM-ANP. Journal of Cleaner Production, 293, 126023.
  • LaGrange, E. (2019, September). Developing a digital twin: The roadmap for oil and gas optimization. In SPE Offshore Europe Conference and Exhibition. OnePetro.
  • Lee, J., Cameron, I., & Hassall, M. (2019). Improving process safety: What roles for Digitalization and Industry 4.0?. Process safety and environmental protection, 132, 325-339.
  • Liu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346-361.
  • Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration, 6, 1-10.
  • Machado, C. G., Winroth, M., Carlsson, D., Almström, P., Centerholt, V., & Hallin, M. (2019). Industry 4.0 readiness in manufacturing companies: challenges and enablers towards increased digitalization. Procedia Cirp, 81, 1113-1118.
  • Majumdar, A., Garg, H., & Jain, R. (2021). Managing the barriers of Industry 4.0 adoption and implementation in textile and clothing industry: Interpretive structural model and triple helix framework. Computers in Industry, 125, 103372.
  • Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019). Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Computers in industry, 109, 134-152.
  • Mathivathanan, D., Mathiyazhagan, K., Rana, N. P., Khorana, S., & Dwivedi, Y. K. (2021). Barriers to the adoption of blockchain technology in business supply chains: a total interpretive structural modelling (TISM) approach. International Journal of Production Research, 59(11), 3338-3359.
  • Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384-1400.
  • Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384-1400.
  • Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of manufacturing systems, 49, 215-225.
  • Moktadir, M. A., Ali, S. M., Kusi-Sarpong, S., & Shaikh, M. A. A. (2018). Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection. Process safety and environmental protection, 117, 730-741.
  • Müller, J. M. (2019). Assessing the barriers to Industry 4.0 implementation from a workers’ perspective. IFAC-PapersOnLine, 52(13), 2189-2194.
  • Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia manufacturing, 11, 939-948.
  • Opoku, D. G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 40, 102726.
  • Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, 13, 1206-1214.
  • Pfeiffer, B. M., Oppelt, M., & Leingang, C. (2019, September). Evolution of a digital twin for a steam cracker. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 467-474). IEEE.
  • Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546.
  • Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546.
  • Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a modeling perspective. Ieee Access, 8, 21980-22012.
  • Rejeb, A., Keogh, J. G., Leong, G. K., & Treiblmaier, H. (2021). Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. International Journal of Production Research, 59(12), 3747-3776.
  • Ren, L., Sun, Y., Cui, J., & Zhang, L. (2018). Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48, 71-77.
  • Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), 335-341.
  • Rodríguez, A. J., Pastorino, R., Carro-Lagoa, Á., Janssens, K., & Naya, M. Á. (2021). Hardware acceleration of multibody simulations for real-time embedded applications. Multibody System Dynamics, 51(4), 455-473.
  • Rojek, I., Mikołajewski, D., & Dostatni, E. (2020). Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Applied Sciences, 11(1), 31.
  • Sahu, C. K., Young, C., & Rai, R. (2021). Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review. International Journal of Production Research, 59(16), 4903-4959.
  • Sarkar, B. D., & Shankar, R. (2021). Understanding the barriers of port logistics for effective operation in the Industry 4.0 era: Data-driven decision making. International Journal of Information Management Data Insights, 1(2), 100031.
  • Scheifele, C., Verl, A., & Riedel, O. (2019). Real-time co-simulation for the virtual commissioning of production systems. Procedia CIRP, 79, 397-402.
  • Schröder, C. (2016). The challenges of industry 4.0 for small and medium-sized enterprises. Friedrich-Ebert-Stiftung: Bonn, Germany.
  • Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp, 52, 161-166.
  • Singh, R., & Bhanot, N. (2020). An integrated DEMATEL-MMDE-ISM based approach for analysing the barriers of IoT implementation in the manufacturing industry. International Journal of Production Research, 58(8), 2454-2476.
  • Singhal, D., Tripathy, S., & Jena, S. K. (2019). Sustainability through remanufacturing of e-waste: Examination of critical factors in the Indian context. Sustainable Production and Consumption, 20, 128-139.
  • Sony, M., & Naik, S. (2020). Critical factors for the successful implementation of Industry 4.0: a review and future research direction. Production Planning & Control, 31(10), 799-815.
  • Spalart, P. R., & Venkatakrishnan, V. (2016). On the role and challenges of CFD in the aerospace industry. The Aeronautical Journal, 120(1223), 209-232.
  • Srivastava, S., & Dubey, R. (2014). Supply chain skill gap modelling using interpretive structural modelling and MICMAC analysis. International Journal of Operations and Quantitative Management, 20(1), 33-47.
  • Suresh, N., Hemamala, K., & Ashok, N. (2018). Challenges in implementing industry revolution 4.0 in Indian manufacturing SMES: insights from five case studies. International Journal of Engineering & Technology, 7(2.4), 136-139.
  • Suresh, N., Hemamala, K., & Ashok, N. (2018). Challenges in implementing industry revolution 4.0 in INDIAN manufacturing SMES: insights from five case studies. International Journal of Engineering & Technology, 7(2.4), 136-139.
  • Thoben, K. D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International journal of automation technology, 11(1), 4-16.
  • Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain?. Procedia manufacturing, 13, 1175-1182.
  • Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335-340.
  • Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia manufacturing, 20, 233-238.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International journal of production economics, 176, 98-110.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International journal of production economics, 176, 98-110.
  • Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International journal of distributed sensor networks, 12(1), 3159805.
  • Wankhede, V. A., & Vinodh, S. (2021). Analysis of industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 159, 107487.
  • Wisskirchen, G., Biacabe, B., Bormann, U., Muntz, A., Niehaus, G., Soler, G., von Brauchitsch, B., et al. (2017). Artificial Intelligence and Robotics and Their Impact on the Workplace. IBA Global Employment Institute, 11(5), 49–67.
  • Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941-2962.
  • Yadav, G., & Desai, T. N. (2017). Analyzing lean six sigma enablers: a hybrid ISM-fuzzy MICMAC approach. The TQM Journal.
  • Yang, Z., & Lin, Y. (2020). The effects of supply chain collaboration on green innovation performance: An interpretive structural modeling analysis. Sustainable Production and Consumption, 23, 1-10.
  • Yun, J. P., Shin, W. C., Koo, G., Kim, M. S., Lee, C., & Lee, S. J. (2020). Automated defect inspection system for metal surfaces based on deep learning and data augmentation. Journal of Manufacturing Systems, 55, 317-324.
  • Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2147-2152). IEEE.
  • Zhou, X., Eibeck, A., Lim, M. Q., Krdzavac, N. B., & Kraft, M. (2019). An agent composition framework for the J-Park Simulator-A knowledge graph for the process industry. Computers & Chemical Engineering, 130, 106577.

ANALYSIS OF THE BARRIERS TO INDUSTRY 4.0 ADOPTION IN THE REPUBLIC OF TURKEY WITH INTERPRETATIONAL STRUCTURAL MODELING (ISM) AND MICMAC

Year 2024, Volume: 7 Issue: 1, 51 - 67, 19.07.2024
https://doi.org/10.46238/jobda.1215803

Abstract

Nowadays, Industry 4.0 has gained importance with digital technologies and Artificial Intelligence and reduces costs by enabling customized production, including three-dimensional production. It increases quality, ensures customer satisfaction and protects the environment. Industry 4.0 also transforms occupational health and safety, changing safety approaches. Despite all these positive advantages, there are still barriers in front of the applications of Industry 4.0. This study aimed to identify and analyze the potential barriers that will complicate the implementation of Industry 4.0 in the Republic of Türkiye. In this article, the word “Turkey” means the Republic of Turkey. After a comprehensive literature review, the opinions of industry experts were also taken and barriers were identified. These barriers were identified as production infrastructure, cost of installation, digital data protection, security procedures, data usage challenges, uncertain values of products, uncertainty of profit, lack of experienced workforce, production interruptions, resistance to change, government support, increased dependence on machinery, legislation and government policy. Interpretive structural modeling (ISM) and MICMAC analyzes were used to develop a hierarchical structure among the identified barriers. In addition, suggestions are made for businesses that will transition to Industry 4.0 in Turkey.

References

  • AbouRizk, S. (2010). Role of simulation in construction engineering and management. Journal of construction engineering and management, 136(10), 1140-1153.
  • Aggarwal, A., Gupta, S., & Ojha, M. K. (2019). Evaluation of key challenges to industry 4.0 in Indian context: a DEMATEL approach. In Advances in Industrial and Production Engineering (pp. 387-396). Springer, Singapore.
  • Azevedo, S. G., Sequeira, T., Santos, M., & Mendes, L. (2019). Biomass-related sustainability: A review of the literature and interpretive structural modeling. Energy, 171, 1107-1125.
  • Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia manufacturing, 13, 1245-1252.
  • Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15-16), 4719-4742.
  • Braaksma, A. J., Klingenberg, W. W., & van Exel, P. P. (2011). A review of the use of asset information standards for collaboration in the process industry. Computers in industry, 62(3), 337-350.
  • Calabrese, A., Levialdi Ghiron, N., & Tiburzi, L. (2021). ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: a literature review, a multiple case study, and a conceptual framework. Production Planning & Control, 32(3), 213-227.
  • Chauhan, C., Singh, A., & Luthra, S. (2021). Barriers to industry 4.0 adoption and its performance implications: An empirical investigation of emerging economy. Journal of Cleaner Production, 285, 124809.
  • Cherrafi, A., Elfezazi, S., Garza-Reyes, J. A., Benhida, K., & Mokhlis, A. (2017). Barriers in Green Lean implementation: a combined systematic literature review and interpretive structural modelling approach. Production Planning & Control, 28(10), 829-842.
  • Cozmiuc, D., & Petrisor, I. (2018). Industrie 4.0 by siemens: steps made next. Journal of Cases on Information Technology (JCIT), 20(1), 31-45.
  • Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technological Forecasting and Social Change, 168, 120756.
  • Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of production economics, 204, 383-394.
  • Dalmarco, G., & Barros, A. C. (2018). Adoption of Industry 4.0 technologies in supply chains. In Innovation and Supply Chain Management (pp. 303-319). Springer, Cham.
  • Elhusseiny, H. M., & Crispim, J. (2022). SMEs, Barriers and Opportunities on adopting Industry 4.0: A Review. Procedia Computer Science, 196, 864-871.
  • Errandonea, I., Beltrán, S., & Arrizabalaga, S. (2020). Digital Twin for maintenance: A literature review. Computers in Industry, 123, 103316.
  • Fathi, M., & Ghobakhloo, M. (2020). Enabling mass customization and manufacturing sustainability in industry 4.0 context: a novel heuristic algorithm for in-plant material supply optimization. Sustainability, 12(16), 6669.
  • Flatt, H., Schriegel, S., Jasperneite, J., Trsek, H., & Adamczyk, H. (2016, September). Analysis of the Cyber-Security of industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-4). IEEE.
  • Fotland, G., Haskins, C., & Rølvåg, T. (2020). Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels. Systems Engineering, 23(2), 177-188.
  • Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26.
  • Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
  • Frederico, G. F., Garza-Reyes, J. A., Anosike, A., & Kumar, V. (2019). Supply Chain 4.0: concepts, maturity and research agenda. Supply Chain Management: An International Journal.
  • Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE access, 8, 108952-108971.
  • Gardas, B. B., Raut, R. D., & Narkhede, B. (2019). Determinants of sustainable supply chain management: A case study from the oil and gas supply chain. Sustainable Production and Consumption, 17, 241-253.
  • Ghadge, A., Kara, M. E., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management.
  • Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of manufacturing technology management.
  • Ghobakhloo, M. (2020). Determinants of information and digital technology implementation for smart manufacturing. International Journal of Production Research, 58(8), 2384-2405.
  • Glass, R., Meissner, A., Gebauer, C., Stürmer, S., & Metternich, J. (2018). Identifying the barriers to Industrie 4.0. Procedia Cirp, 72, 985-988.
  • Hertzum, M. (2014). Expertise seeking: A review. Information processing & management, 50(5), 775-795. Ho, G. T., Tang, Y. M., Tsang, K. Y., Tang, V., & Chau, K. Y. (2021). A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Systems with Applications, 179, 115101.
  • Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities?. Technological forecasting and social change, 146, 119-132.
  • Hsu, Y., Chiu, J. M., & Liu, J. S. (2019, December). Digital twins for industry 4.0 and beyond. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 526-530). IEEE.
  • Hussain, M., Awasthi, A., & Tiwari, M. K. (2016). Interpretive structural modeling-analytic network process integrated framework for evaluating sustainable supply chain management alternatives. Applied Mathematical Modelling, 40(5-6), 3671-3687.
  • Kagermann, D., Wahlster, W., & Helbig, J. (2013). Securing the Future of German Manufacturing Industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Final Report of the Industrie 4.0 Working Group, retrieved April 5, 2015.
  • Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.
  • Kamble, S. S., Gunasekaran, A., & Sharma, R. (2018). Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Computers in Industry, 101, 107-119.
  • Kamble, S. S., Gunasekaran, A., Parekh, H., & Joshi, S. (2019). Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, 48, 154-168.
  • Karadayi-Usta, S. (2019). An Interpretive Structural Analysis for Industry 4.0 Adoption Challenges. IEEE Transactions on Engineering Management, 67(3), 973–978.
  • Kergroach, S. (2017). Industry 4.0: New challenges and opportunities for the labour market. Форсайт, 11(4 (eng)), 6-8.
  • Khan, A., & Turowski, K. (2016). A survey of current challenges in manufacturing industry and preparation for industry 4.0. In Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry”(IITI’16) (pp. 15-26). Springer, Cham.
  • Khan, U., & Haleem, A. (2015). Improving to smart organization: an integrated ISM and fuzzy-MICMAC modelling of barriers. Journal of Manufacturing Technology Management.
  • Kiel, D., Arnold, C., & Voigt, K. I. (2017). The influence of the Industrial Internet of Things on business models of established manufacturing companies–A business level perspective. Technovation, 68, 4–19.
  • Kiraz, A., Canpolat, O., ¨Ozkurt, C., & Tas¸kın, H. (2020). Analysis of the factors affecting the Industry 4.0 tendency with the structural equation model and an application. Computers & Industrial Engineering, 150, Article 106911.
  • Kockmann, N. (2019). Digital methods and tools for chemical equipment and plants. Reaction Chemistry & Engineering, 4(9), 1522-1529.
  • Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016-1022.
  • Kumar, P., Bhamu, J., & Sangwan, K. S. (2021). Analysis of barriers to Industry 4.0 adoption in manufacturing organizations: An ISM approach. Procedia CIRP, 98, 85-90.
  • Kumar, P., Singh, R. K., & Kumar, V. (2021). Managing supply chains for sustainable operations in the era of industry 4.0 and circular economy: Analysis of barriers. Resources, Conservation and Recycling, 164, 105215.
  • Kumar, S., Raut, R. D., Nayal, K., Kraus, S., Yadav, V. S., & Narkhede, B. E. (2021). To identify industry 4.0 and circular economy adoption barriers in the agriculture supply chain by using ISM-ANP. Journal of Cleaner Production, 293, 126023.
  • LaGrange, E. (2019, September). Developing a digital twin: The roadmap for oil and gas optimization. In SPE Offshore Europe Conference and Exhibition. OnePetro.
  • Lee, J., Cameron, I., & Hassall, M. (2019). Improving process safety: What roles for Digitalization and Industry 4.0?. Process safety and environmental protection, 132, 325-339.
  • Liu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346-361.
  • Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration, 6, 1-10.
  • Machado, C. G., Winroth, M., Carlsson, D., Almström, P., Centerholt, V., & Hallin, M. (2019). Industry 4.0 readiness in manufacturing companies: challenges and enablers towards increased digitalization. Procedia Cirp, 81, 1113-1118.
  • Majumdar, A., Garg, H., & Jain, R. (2021). Managing the barriers of Industry 4.0 adoption and implementation in textile and clothing industry: Interpretive structural model and triple helix framework. Computers in Industry, 125, 103372.
  • Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019). Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Computers in industry, 109, 134-152.
  • Mathivathanan, D., Mathiyazhagan, K., Rana, N. P., Khorana, S., & Dwivedi, Y. K. (2021). Barriers to the adoption of blockchain technology in business supply chains: a total interpretive structural modelling (TISM) approach. International Journal of Production Research, 59(11), 3338-3359.
  • Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384-1400.
  • Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384-1400.
  • Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of manufacturing systems, 49, 215-225.
  • Moktadir, M. A., Ali, S. M., Kusi-Sarpong, S., & Shaikh, M. A. A. (2018). Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection. Process safety and environmental protection, 117, 730-741.
  • Müller, J. M. (2019). Assessing the barriers to Industry 4.0 implementation from a workers’ perspective. IFAC-PapersOnLine, 52(13), 2189-2194.
  • Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia manufacturing, 11, 939-948.
  • Opoku, D. G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 40, 102726.
  • Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, 13, 1206-1214.
  • Pfeiffer, B. M., Oppelt, M., & Leingang, C. (2019, September). Evolution of a digital twin for a steam cracker. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 467-474). IEEE.
  • Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546.
  • Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546.
  • Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a modeling perspective. Ieee Access, 8, 21980-22012.
  • Rejeb, A., Keogh, J. G., Leong, G. K., & Treiblmaier, H. (2021). Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. International Journal of Production Research, 59(12), 3747-3776.
  • Ren, L., Sun, Y., Cui, J., & Zhang, L. (2018). Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48, 71-77.
  • Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), 335-341.
  • Rodríguez, A. J., Pastorino, R., Carro-Lagoa, Á., Janssens, K., & Naya, M. Á. (2021). Hardware acceleration of multibody simulations for real-time embedded applications. Multibody System Dynamics, 51(4), 455-473.
  • Rojek, I., Mikołajewski, D., & Dostatni, E. (2020). Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Applied Sciences, 11(1), 31.
  • Sahu, C. K., Young, C., & Rai, R. (2021). Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review. International Journal of Production Research, 59(16), 4903-4959.
  • Sarkar, B. D., & Shankar, R. (2021). Understanding the barriers of port logistics for effective operation in the Industry 4.0 era: Data-driven decision making. International Journal of Information Management Data Insights, 1(2), 100031.
  • Scheifele, C., Verl, A., & Riedel, O. (2019). Real-time co-simulation for the virtual commissioning of production systems. Procedia CIRP, 79, 397-402.
  • Schröder, C. (2016). The challenges of industry 4.0 for small and medium-sized enterprises. Friedrich-Ebert-Stiftung: Bonn, Germany.
  • Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp, 52, 161-166.
  • Singh, R., & Bhanot, N. (2020). An integrated DEMATEL-MMDE-ISM based approach for analysing the barriers of IoT implementation in the manufacturing industry. International Journal of Production Research, 58(8), 2454-2476.
  • Singhal, D., Tripathy, S., & Jena, S. K. (2019). Sustainability through remanufacturing of e-waste: Examination of critical factors in the Indian context. Sustainable Production and Consumption, 20, 128-139.
  • Sony, M., & Naik, S. (2020). Critical factors for the successful implementation of Industry 4.0: a review and future research direction. Production Planning & Control, 31(10), 799-815.
  • Spalart, P. R., & Venkatakrishnan, V. (2016). On the role and challenges of CFD in the aerospace industry. The Aeronautical Journal, 120(1223), 209-232.
  • Srivastava, S., & Dubey, R. (2014). Supply chain skill gap modelling using interpretive structural modelling and MICMAC analysis. International Journal of Operations and Quantitative Management, 20(1), 33-47.
  • Suresh, N., Hemamala, K., & Ashok, N. (2018). Challenges in implementing industry revolution 4.0 in Indian manufacturing SMES: insights from five case studies. International Journal of Engineering & Technology, 7(2.4), 136-139.
  • Suresh, N., Hemamala, K., & Ashok, N. (2018). Challenges in implementing industry revolution 4.0 in INDIAN manufacturing SMES: insights from five case studies. International Journal of Engineering & Technology, 7(2.4), 136-139.
  • Thoben, K. D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International journal of automation technology, 11(1), 4-16.
  • Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain?. Procedia manufacturing, 13, 1175-1182.
  • Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335-340.
  • Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia manufacturing, 20, 233-238.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International journal of production economics, 176, 98-110.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International journal of production economics, 176, 98-110.
  • Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International journal of distributed sensor networks, 12(1), 3159805.
  • Wankhede, V. A., & Vinodh, S. (2021). Analysis of industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 159, 107487.
  • Wisskirchen, G., Biacabe, B., Bormann, U., Muntz, A., Niehaus, G., Soler, G., von Brauchitsch, B., et al. (2017). Artificial Intelligence and Robotics and Their Impact on the Workplace. IBA Global Employment Institute, 11(5), 49–67.
  • Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941-2962.
  • Yadav, G., & Desai, T. N. (2017). Analyzing lean six sigma enablers: a hybrid ISM-fuzzy MICMAC approach. The TQM Journal.
  • Yang, Z., & Lin, Y. (2020). The effects of supply chain collaboration on green innovation performance: An interpretive structural modeling analysis. Sustainable Production and Consumption, 23, 1-10.
  • Yun, J. P., Shin, W. C., Koo, G., Kim, M. S., Lee, C., & Lee, S. J. (2020). Automated defect inspection system for metal surfaces based on deep learning and data augmentation. Journal of Manufacturing Systems, 55, 317-324.
  • Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2147-2152). IEEE.
  • Zhou, X., Eibeck, A., Lim, M. Q., Krdzavac, N. B., & Kraft, M. (2019). An agent composition framework for the J-Park Simulator-A knowledge graph for the process industry. Computers & Chemical Engineering, 130, 106577.
There are 98 citations in total.

Details

Primary Language Turkish
Journal Section Original Scientific Articles
Authors

Adnan Karabulut 0000-0002-0643-098X

Mehmet Baran 0000-0001-6674-7308

Publication Date July 19, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Karabulut, A., & Baran, M. (2024). TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ. Journal of Business in The Digital Age, 7(1), 51-67. https://doi.org/10.46238/jobda.1215803
AMA Karabulut A, Baran M. TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ. JOBDA. July 2024;7(1):51-67. doi:10.46238/jobda.1215803
Chicago Karabulut, Adnan, and Mehmet Baran. “TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ”. Journal of Business in The Digital Age 7, no. 1 (July 2024): 51-67. https://doi.org/10.46238/jobda.1215803.
EndNote Karabulut A, Baran M (July 1, 2024) TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ. Journal of Business in The Digital Age 7 1 51–67.
IEEE A. Karabulut and M. Baran, “TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ”, JOBDA, vol. 7, no. 1, pp. 51–67, 2024, doi: 10.46238/jobda.1215803.
ISNAD Karabulut, Adnan - Baran, Mehmet. “TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ”. Journal of Business in The Digital Age 7/1 (July 2024), 51-67. https://doi.org/10.46238/jobda.1215803.
JAMA Karabulut A, Baran M. TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ. JOBDA. 2024;7:51–67.
MLA Karabulut, Adnan and Mehmet Baran. “TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ”. Journal of Business in The Digital Age, vol. 7, no. 1, 2024, pp. 51-67, doi:10.46238/jobda.1215803.
Vancouver Karabulut A, Baran M. TÜRKİYE’DE ENDÜSTRİ 4.0’IN BENİMSENMESİNİN ÖNÜNDEKİ ENGELLERİN YORUMLAYICI YAPISAL MODELLEME (ISM) VE MICMAC İLE ANALİZİ. JOBDA. 2024;7(1):51-67.

                                                              Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.