Research Article
BibTex RIS Cite

Türkiye Cumhuriyeti Sağlık Bakanı’nın Covid-19 Dönemine İlişkin Twitter Mesajlarının Çalışan Motivasyonu Bağlamında İncelenmesi: LDA Temelli Konu Modelleme Yaklaşımı

Year 2022, Volume: 4 Issue: 2, 198 - 217, 30.07.2022

Abstract

Sosyal medyanın iletişimdeki gücü, Covid-19’un beraberinde getirdiği yeni dünya ile daha önemli hale gelmiştir. Bu araştırmanın temel amacı, pandemi döneminde Türkiye Cumhuriyeti Sağlık Bakanı tarafından paylaşılan tweetleri çalışan motivasyonu bağlamında incelemektir. Bu kapsamda Python kütüphaneleri kullanılarak Gizli Dirichlet Ayırımı (LDA) temelli olasılıksal bir model oluşturulması alt bir amaç olarak belirlenmiştir. Analizler 3371 tweet ile başlamış ve konu bağlamında 482 tweet ile sürdürülmüştür. Ulaşılan sonuçlar, sağlık çalışanlarıyla ilgili olarak paylaşılan tweetlerin ilgili konunun oranına göre sırasıyla; “bilgilendirme”, “aşı ile mücadele ve örneklik”, “şiddet”, “fedakârlık ve güven” ve “haklar ve özel günler” şeklinde beş konuda kümelendiğini göstermektedir. Paylaşım anlamında son iki sırada olan “fedakârlık ve güven” ve “haklar ve özel günler” konuları, en çok beğeni ve retweet edilme ortalamasına sahip ikinci ve üçüncü konu olarak görülmektedir. Bu kapsamda açıklanan sonuçlar, modelin yerel konuşma dilinde yayımlanmış ilgili metinlerin yayımcısının görüşlerini özetleyen kelimelere indirgenebileceğini ve izleyiciler üzerinde oluşturduğu tepkinin, duygusal olarak görülmesini mümkün kıldığını; bununla birlikte paylaşılan mesajların motivasyonel anlamda okuyuculara verdiği mesajı tam olarak yansıtamadığını göstermiştir.

References

  • Ahmed, W., J. Vidal-Alaball, J. Downing, & F. L. Seguí. (2020). “COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data.” Journal of Medical Internet Research 22 (5): e19458
  • Akın, A. A., & Akın, M. D. (2007). Zemberek, an open source NLP framework for Turkic languages. Structure, 10(2007), 1-5.
  • Altıntaş, M. (2020). Psiko-sosyal ve örgütsel-yönetsel motivasyon faktörlerinin iş tatminine etkisi: Havayolu sektöründe bir araştırma. İktisadi İdari ve Siyasal Araştırmalar Dergisi (İKTİSAD), 5(13), 217-239.
  • Armstrong, M. (2006). Human resource management practice. Distributed Computing (10th ed.). https://doi. org/10.1002/9781118802717.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
  • Can, H., Azizoğlu, Ö. A. ve Aydın, E. M. (2015), Örgütsel Davranış, Siyasal Kitapevi: Ankara.
  • Duran, Y. (2020). 10 Soruda Koronavirüs Sonrası Küresel Sistem. https://www.yesilay.org.tr/tr/makaleler/10-soruda-koronavirus-sonrasi-kuresel-sistem
  • Eren, E. (1998), Örgütsel Davranış ve Yönetim Psikolojisi, Beşinci Baskı, İstanbul: Beta Yayınları.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl_1), 5228-5235.
  • Karakaş, M. (2020). Covid-19 salgınının çok boyutlu sosyolojisi ve yeni normal meselesi. İstanbul University Journal of Sociology, 40(1), 541-573.
  • Katz, D. (1964). The motivational basis of organizational behavior. Behavioral science, 9(2), 131-146.
  • Khalil M. Dirani, Mehrangiz Abadi, Amin Alizadeh, Bhagyashree Barhate,Rosemary Capuchino Garza, Noeline Gunasekara, Ghassan Ibrahim & Zachery Majzun (2020). Leadership competencies and the essential role of human resource development in times of crisis:a response to Covid-19 pandemic, Human Resource Development International, 23:4, 380-394.
  • Koçel, T. (2015). İşletme yöneticiliği. Beta Yayınevi, 16. Baskı, İstanbul.
  • Krestel, R., Fankhauser, P., & Nejdl, W. (2009). Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems (pp. 61-68).
  • Liu, C. (2020). Analysis of Relationship Between Hot News and Stock Market Based on LDA Model and Event Study. In Journal of Physics: Conference Series (Vol. 1616, No. 1, p. 012048). IOP Publishing.
  • Liu, S., & Liu, J. (2021). Understanding behavioral intentions toward COVID-19 vaccines: theory-based content analysis of tweets. Journal of Medical Internet Research, 23(5), e28118.
  • Maslow, A. H. (1943). A Theory of Human Motivation. Psychological Review, 50(4), 370- 396.
  • Maslow, A. H. (1954). Motivation and personality,3rded.NewYork: Longman.
  • Mayfield, J., & Mayfield, M. (2009). The role of leader motivating language in employee absenteeism. The Journal of Business Communication (1973), 46(4), 455-479.
  • Mayfield, J.R., Mayfield, M. R., & Kopf, J. (1998). The effects of leader motivating language on subordinate performance and satisfaction. Human Resource Management, 37(3-4), 235–248. doi:10.1002/(sici)1099-050x(199823/24)37:3/4<235::aid-hrm6>3.0.co;2-x
  • Mutanga, M. B., & Abayomi, A. (2022). Tweeting on COVID-19 pandemic in South Africa: LDA-based topic modelling approach. African Journal of Science, Technology, Innovation and Development, 14(1), 163-172.
  • Nanath, K., & Joy, G. (2021). Leveraging Twitter data to analyze the virality of Covid-19 tweets: a text mining approach. Behaviour & Information Technology, 1-19.
  • Orangefiery. (2020). “Leadership Communications during COVID-19: A Survey of US Organizations.”https://orangefiery.com/uploads/Orangefiery_COVID19_Leadership_ Communications_Research_040320.pdf
  • Park, H. W., S. Park, & M. Chong.2020. “Conversations and Medical News Frames on Twitter: Infodemiological Study on Covid-19 in South Korea.” Journal of Medical Internet Research 22 (5): e18897.
  • Qiu, W., Rutherford, S., Chu, C., Mao, A., & Hou, X. (2016). Risk communication and public health. Global Journal of Medicine and Public Health, 5(4), 1-11.
  • Robbins, S. P., & Judge, T. (2012). Essentials of organizational behavior. 15th edition, ISBN 978-0-13-546889-0, Pearson Education.
  • Savage, N. (2011). Twitter as medium and message. Communications of the ACM, 54(3), 18-20.
  • Stoller, J. K. (2020). Reflections on leadership in the time of COVID-19. BMJ Leader, 1-3.
  • Sullivan, J. J. (1988). Three roles of language in motivation theory. Academy of Management Review, 13(1), 104-115.
  • Sutton, J., Renshaw, S. L., & Butts, C. T. (2020). The first 60 days: American public health Agencies' social media strategies in the emerging COVID-19 pandemic. Health security, 18(6), 454-460.
  • Tirkkonen, P., & Luoma-aho, V. (2011). Online authority communication during an epidemic: A Finnish example. Public Relations Review, 37(2), 172-174.
  • Türk Dil Kurumu Sözlükleri (2022). Motivasyon. TDK. Erişim tarihi Temmuz 1, 2022, https://sozluk.gov.tr/
  • Walther, J. B. (2008). Social information processing theory. Ed. Em Griffin, Andrew Ledbetter, Glenn Sparks in A First Look At Communicatıon Theory (Tenth Edition) Published by McGraw-Hill Education, 2 Penn Plaza, New York.
  • Zwijze-Koning, K., & de Jong, M. (2007). Evaluating the communication satisfaction questionnaire as a communication audit tool. Management communication quarterly, 20(3), 261-282.

An Investigation in the Context of Employee Motivation About the Twitter Messages belonging to the Minister of Health of the Republic of Türkiye Regarding the Covid-19 Period : LDA-Based Topic Modelling Approach

Year 2022, Volume: 4 Issue: 2, 198 - 217, 30.07.2022

Abstract

The power of social media in communication has become more important with the new world brought about by Covid-19. The main purpose of this research is to examine the tweets shared by the Minister of Health of the Republic of Türkiye during the pandemic period in the context of employee motivation. For this, creating a probabilistic model based on Latent Dirichlet Allocation (LDA) using Python libraries has been determined as a sub-goal. The analyzes started with 3371 tweets, and continued with 482 tweets in the context of the subject. The results show that the tweets shared about healthcare professionals are clustered in five topics. According to the ratio of the relevant topics, these are; “information”, “struggle against vaccination and exemplary”, “violence”, “self sacrifice and trust” and “rights and special days”. “Self sacrifice and trust" and "rights and special days" are in the last two places in sharing rates. Nevertheless, these two topics are the second and third topics with the most likes and retweets on average. According to the results, the model can be reduced to words that summarize the views of the possessor of the relevant texts published in the local spoken language and make it possible to see the reaction it creates on the audience/reader emotionally. However, the model cannot fully reflect the motivational message that the shared messages give to the readers.

References

  • Ahmed, W., J. Vidal-Alaball, J. Downing, & F. L. Seguí. (2020). “COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data.” Journal of Medical Internet Research 22 (5): e19458
  • Akın, A. A., & Akın, M. D. (2007). Zemberek, an open source NLP framework for Turkic languages. Structure, 10(2007), 1-5.
  • Altıntaş, M. (2020). Psiko-sosyal ve örgütsel-yönetsel motivasyon faktörlerinin iş tatminine etkisi: Havayolu sektöründe bir araştırma. İktisadi İdari ve Siyasal Araştırmalar Dergisi (İKTİSAD), 5(13), 217-239.
  • Armstrong, M. (2006). Human resource management practice. Distributed Computing (10th ed.). https://doi. org/10.1002/9781118802717.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
  • Can, H., Azizoğlu, Ö. A. ve Aydın, E. M. (2015), Örgütsel Davranış, Siyasal Kitapevi: Ankara.
  • Duran, Y. (2020). 10 Soruda Koronavirüs Sonrası Küresel Sistem. https://www.yesilay.org.tr/tr/makaleler/10-soruda-koronavirus-sonrasi-kuresel-sistem
  • Eren, E. (1998), Örgütsel Davranış ve Yönetim Psikolojisi, Beşinci Baskı, İstanbul: Beta Yayınları.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl_1), 5228-5235.
  • Karakaş, M. (2020). Covid-19 salgınının çok boyutlu sosyolojisi ve yeni normal meselesi. İstanbul University Journal of Sociology, 40(1), 541-573.
  • Katz, D. (1964). The motivational basis of organizational behavior. Behavioral science, 9(2), 131-146.
  • Khalil M. Dirani, Mehrangiz Abadi, Amin Alizadeh, Bhagyashree Barhate,Rosemary Capuchino Garza, Noeline Gunasekara, Ghassan Ibrahim & Zachery Majzun (2020). Leadership competencies and the essential role of human resource development in times of crisis:a response to Covid-19 pandemic, Human Resource Development International, 23:4, 380-394.
  • Koçel, T. (2015). İşletme yöneticiliği. Beta Yayınevi, 16. Baskı, İstanbul.
  • Krestel, R., Fankhauser, P., & Nejdl, W. (2009). Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems (pp. 61-68).
  • Liu, C. (2020). Analysis of Relationship Between Hot News and Stock Market Based on LDA Model and Event Study. In Journal of Physics: Conference Series (Vol. 1616, No. 1, p. 012048). IOP Publishing.
  • Liu, S., & Liu, J. (2021). Understanding behavioral intentions toward COVID-19 vaccines: theory-based content analysis of tweets. Journal of Medical Internet Research, 23(5), e28118.
  • Maslow, A. H. (1943). A Theory of Human Motivation. Psychological Review, 50(4), 370- 396.
  • Maslow, A. H. (1954). Motivation and personality,3rded.NewYork: Longman.
  • Mayfield, J., & Mayfield, M. (2009). The role of leader motivating language in employee absenteeism. The Journal of Business Communication (1973), 46(4), 455-479.
  • Mayfield, J.R., Mayfield, M. R., & Kopf, J. (1998). The effects of leader motivating language on subordinate performance and satisfaction. Human Resource Management, 37(3-4), 235–248. doi:10.1002/(sici)1099-050x(199823/24)37:3/4<235::aid-hrm6>3.0.co;2-x
  • Mutanga, M. B., & Abayomi, A. (2022). Tweeting on COVID-19 pandemic in South Africa: LDA-based topic modelling approach. African Journal of Science, Technology, Innovation and Development, 14(1), 163-172.
  • Nanath, K., & Joy, G. (2021). Leveraging Twitter data to analyze the virality of Covid-19 tweets: a text mining approach. Behaviour & Information Technology, 1-19.
  • Orangefiery. (2020). “Leadership Communications during COVID-19: A Survey of US Organizations.”https://orangefiery.com/uploads/Orangefiery_COVID19_Leadership_ Communications_Research_040320.pdf
  • Park, H. W., S. Park, & M. Chong.2020. “Conversations and Medical News Frames on Twitter: Infodemiological Study on Covid-19 in South Korea.” Journal of Medical Internet Research 22 (5): e18897.
  • Qiu, W., Rutherford, S., Chu, C., Mao, A., & Hou, X. (2016). Risk communication and public health. Global Journal of Medicine and Public Health, 5(4), 1-11.
  • Robbins, S. P., & Judge, T. (2012). Essentials of organizational behavior. 15th edition, ISBN 978-0-13-546889-0, Pearson Education.
  • Savage, N. (2011). Twitter as medium and message. Communications of the ACM, 54(3), 18-20.
  • Stoller, J. K. (2020). Reflections on leadership in the time of COVID-19. BMJ Leader, 1-3.
  • Sullivan, J. J. (1988). Three roles of language in motivation theory. Academy of Management Review, 13(1), 104-115.
  • Sutton, J., Renshaw, S. L., & Butts, C. T. (2020). The first 60 days: American public health Agencies' social media strategies in the emerging COVID-19 pandemic. Health security, 18(6), 454-460.
  • Tirkkonen, P., & Luoma-aho, V. (2011). Online authority communication during an epidemic: A Finnish example. Public Relations Review, 37(2), 172-174.
  • Türk Dil Kurumu Sözlükleri (2022). Motivasyon. TDK. Erişim tarihi Temmuz 1, 2022, https://sozluk.gov.tr/
  • Walther, J. B. (2008). Social information processing theory. Ed. Em Griffin, Andrew Ledbetter, Glenn Sparks in A First Look At Communicatıon Theory (Tenth Edition) Published by McGraw-Hill Education, 2 Penn Plaza, New York.
  • Zwijze-Koning, K., & de Jong, M. (2007). Evaluating the communication satisfaction questionnaire as a communication audit tool. Management communication quarterly, 20(3), 261-282.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Behaviour-Personality Assessment in Psychology
Journal Section Research Articles
Authors

Fatih Sobacı 0000-0002-2261-5079

İsmail Kaban 0000-0003-4138-244X

Muhammet Esat Özdağ 0000-0003-0620-4365

Publication Date July 30, 2022
Submission Date July 12, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Sobacı, F., Kaban, İ., & Özdağ, M. E. (2022). Türkiye Cumhuriyeti Sağlık Bakanı’nın Covid-19 Dönemine İlişkin Twitter Mesajlarının Çalışan Motivasyonu Bağlamında İncelenmesi: LDA Temelli Konu Modelleme Yaklaşımı. Journal of Organizational Behavior Review, 4(2), 198-217.