Anbarasan, P., Venmathi, M., & Krishnakumar, V. (2021). Modeling and Simulation of Standalone PMSG based Wind
Energy Conversion System with Common Mode Voltage Suppression. 2021 7th International Conference on Electrical
Energy Systems (ICEES), 85–88. https://doi.org/10.1109/ICEES51510.2021.9383728
Binwu, & Kouro, Y. L. N. Z. S. (2011). Power Conversion And Control Of Wind Energy Systems. A John Wiley &
Sons, Inc., Publication. https://ieeexplore.ieee.org/servlet/opac?bknumber=6047595
Bisoyi, S. K. (2013). Modeling and Analysis of Variable Speed Wind Turbine equipped with PMSG. International
Journal of Current Engineering and Technology, 2(2), 421–426. https://doi.org/10.14741/ijcet/spl.2.2014.78
Chandran, V. P., Murshid, S., & Singh, B. (2018). Voltage and Frequency Control with Load Levelling of PMSG Based
Small-Hydro System. India International Conference on Power Electronics, IICPE, 2018-Decem, 1–6.
https://doi.org/10.1109/IICPE.2018.8709475
Denny, M. (2004). The efficiency of overshot and undershot waterwheels. European Journal of Physics, 25(2), 193–
202. https://doi.org/10.1088/0143-0807/25/2/006
Eduardo, R., & Palomo, Q. (2019). Wrocław University of Science and Technology Faculty of Electrical Engineering
PhD Thesis.
F. AL Kababjie, P. D. M., & H. Hamdon, W. (2013). Performance Evaluation study of Hybrid Generation System
(Microhydro + Diesel) in Iraqi Remote Rural Electrification_ENG. AL-Rafdain Engineering Journal (AREJ), 21(2), 32–
41. https://doi.org/10.33899/rengj.2013.72823
Fateh, L., Ahmed, O., Amar, O., Abdelhak, D., & Lakhdar, B. (2016). Modeling and control of a permanent magnet
synchronous generator dedicated to standalone wind energy conversion system. Frontiers in Energy, 10(2), 155–163.
https://doi.org/10.1007/s11708-016-0410-1
Fukami, T., Hayamizu, T., Matsui, Y., & Member, S. (2010). Steady-State Analysis of a Permanent-Magnet- Assisted
Salient-Pole Synchronous Generator. 25(2), 388–393.
Ghanim, A. S., Alnaib, I. I., & Bassamaziz, A. (2022). DQ Model of Three Phase Isolated Induction Generator using
Matlab DQ Model of Three Phase Isolated Induction Generator using Matlab. October.
Ghanim, A. S., & Alsammak, A. N. B. (2020). Modelling and Simulation of Self-Excited Induction Generator Driven
By a Wind Turbine. Eastern-European Journal of Enterprise Technologies, 6(8), 6–16. https://doi.org/10.15587/1729-
4061.2020.213246
Hossain, E., Hossain, J., Sakib, N., & Bayindir, R. (2017). Mdelling and simulation of permanent magnet synchoronous
generator wind turbine: A step to microgrid technology. International Journal of Renewable Energy Research, 7(1), 1–
8. https://doi.org/10.20508/ijrer.v7i1.5615.g7013
Kamruzzaman Khan Prince, M., T. Arif, M., Gargoom, A., M. T. Oo, A., & Enamul Haque, M. (2021). Modeling,
Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System. Journal of
Modern Power Systems and Clean Energy, 9(5), 1054–1065. https://doi.org/10.35833/MPCE.2020.000601
Mohan, M., & Vittal, K. P. (2018). Modeling and Simulation of PMSG-Based Wind Power Generation System. 2018
3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), 1, 57–62. https://doi.org/10.1109/RTEICT42901.2018.9012620
Murali Krishna, V. B., Duvvuri, S. S., Yadlapati, K., Pidikiti, T., &Sudheer, P. (2022). Deployment and performance
measurement of renewable energy based permanent magnet synchronous generator system. Measurement: Sensors,
24(August), 100478. https://doi.org/10.1016/j.measen.2022.100478
Praptodiyono, S., Maghfiroh, H., Nizam, M., Hermanu, C., & Wibowo, A. (2021). Design and Prototyping of Electronic
Load Controller for Pico Hydropower System. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(3), 461.
https://doi.org/10.26555/jiteki.v7i3.22271
Quintal-Palomo, R. E., Flota-Banuelos, M., Bassam, A., Peon-Escalante, R., Penunuri, F., & Dybkowski, M. (2021).
Post-Fault Demagnetization of a PMSG Under Field Oriented Control Operation. IEEE Access, 9, 53838–53848.
https://doi.org/10.1109/ACCESS.2021.3070531
Quintal-Palomo, R. E., Gwozdziewicz, M., & Dybkowski, M. (2019). Modelling and co-simulation of a permanent
magnet synchronous generator. COMPEL - The International Journal for Computation and Mathematics in Electrical
and Electronic Engineering, 38(6), 1904–1917. https://doi.org/10.1108/COMPEL-12-2018-0501
Uršič, L., & Nemec, M. (2019). Permanent magnet synchronous machine demagnetisation prevention and torque
estimation control considering rotor temperature. IET Power Electronics, 12(9), 2161–2169. https://doi
DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid
Year 2023,
Volume: 2 Issue: 1, 199 - 206, 30.06.2023
The pico grid implements an essential solution to provide electrical power for isolated areas like villages and remote regions. Wind, tidal or hydropower, etc., may be the energy source for these grids. This application can be effectively served by a permanent magnet synchronous generator (PMSG), which is a very convenient option. In this work, the generator's prime mover is a regular speed source that mimics a pico-hydro turbine. Using park transformation, the dynamic model was built and employed in Matlab/Simulink to study the system's response with different perturbations for operation at constant and variable of load, rotor speed, and flux. The results of the proposed system model show a smooth voltage and current output.
Anbarasan, P., Venmathi, M., & Krishnakumar, V. (2021). Modeling and Simulation of Standalone PMSG based Wind
Energy Conversion System with Common Mode Voltage Suppression. 2021 7th International Conference on Electrical
Energy Systems (ICEES), 85–88. https://doi.org/10.1109/ICEES51510.2021.9383728
Binwu, & Kouro, Y. L. N. Z. S. (2011). Power Conversion And Control Of Wind Energy Systems. A John Wiley &
Sons, Inc., Publication. https://ieeexplore.ieee.org/servlet/opac?bknumber=6047595
Bisoyi, S. K. (2013). Modeling and Analysis of Variable Speed Wind Turbine equipped with PMSG. International
Journal of Current Engineering and Technology, 2(2), 421–426. https://doi.org/10.14741/ijcet/spl.2.2014.78
Chandran, V. P., Murshid, S., & Singh, B. (2018). Voltage and Frequency Control with Load Levelling of PMSG Based
Small-Hydro System. India International Conference on Power Electronics, IICPE, 2018-Decem, 1–6.
https://doi.org/10.1109/IICPE.2018.8709475
Denny, M. (2004). The efficiency of overshot and undershot waterwheels. European Journal of Physics, 25(2), 193–
202. https://doi.org/10.1088/0143-0807/25/2/006
Eduardo, R., & Palomo, Q. (2019). Wrocław University of Science and Technology Faculty of Electrical Engineering
PhD Thesis.
F. AL Kababjie, P. D. M., & H. Hamdon, W. (2013). Performance Evaluation study of Hybrid Generation System
(Microhydro + Diesel) in Iraqi Remote Rural Electrification_ENG. AL-Rafdain Engineering Journal (AREJ), 21(2), 32–
41. https://doi.org/10.33899/rengj.2013.72823
Fateh, L., Ahmed, O., Amar, O., Abdelhak, D., & Lakhdar, B. (2016). Modeling and control of a permanent magnet
synchronous generator dedicated to standalone wind energy conversion system. Frontiers in Energy, 10(2), 155–163.
https://doi.org/10.1007/s11708-016-0410-1
Fukami, T., Hayamizu, T., Matsui, Y., & Member, S. (2010). Steady-State Analysis of a Permanent-Magnet- Assisted
Salient-Pole Synchronous Generator. 25(2), 388–393.
Ghanim, A. S., Alnaib, I. I., & Bassamaziz, A. (2022). DQ Model of Three Phase Isolated Induction Generator using
Matlab DQ Model of Three Phase Isolated Induction Generator using Matlab. October.
Ghanim, A. S., & Alsammak, A. N. B. (2020). Modelling and Simulation of Self-Excited Induction Generator Driven
By a Wind Turbine. Eastern-European Journal of Enterprise Technologies, 6(8), 6–16. https://doi.org/10.15587/1729-
4061.2020.213246
Hossain, E., Hossain, J., Sakib, N., & Bayindir, R. (2017). Mdelling and simulation of permanent magnet synchoronous
generator wind turbine: A step to microgrid technology. International Journal of Renewable Energy Research, 7(1), 1–
8. https://doi.org/10.20508/ijrer.v7i1.5615.g7013
Kamruzzaman Khan Prince, M., T. Arif, M., Gargoom, A., M. T. Oo, A., & Enamul Haque, M. (2021). Modeling,
Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System. Journal of
Modern Power Systems and Clean Energy, 9(5), 1054–1065. https://doi.org/10.35833/MPCE.2020.000601
Mohan, M., & Vittal, K. P. (2018). Modeling and Simulation of PMSG-Based Wind Power Generation System. 2018
3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), 1, 57–62. https://doi.org/10.1109/RTEICT42901.2018.9012620
Murali Krishna, V. B., Duvvuri, S. S., Yadlapati, K., Pidikiti, T., &Sudheer, P. (2022). Deployment and performance
measurement of renewable energy based permanent magnet synchronous generator system. Measurement: Sensors,
24(August), 100478. https://doi.org/10.1016/j.measen.2022.100478
Praptodiyono, S., Maghfiroh, H., Nizam, M., Hermanu, C., & Wibowo, A. (2021). Design and Prototyping of Electronic
Load Controller for Pico Hydropower System. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(3), 461.
https://doi.org/10.26555/jiteki.v7i3.22271
Quintal-Palomo, R. E., Flota-Banuelos, M., Bassam, A., Peon-Escalante, R., Penunuri, F., & Dybkowski, M. (2021).
Post-Fault Demagnetization of a PMSG Under Field Oriented Control Operation. IEEE Access, 9, 53838–53848.
https://doi.org/10.1109/ACCESS.2021.3070531
Quintal-Palomo, R. E., Gwozdziewicz, M., & Dybkowski, M. (2019). Modelling and co-simulation of a permanent
magnet synchronous generator. COMPEL - The International Journal for Computation and Mathematics in Electrical
and Electronic Engineering, 38(6), 1904–1917. https://doi.org/10.1108/COMPEL-12-2018-0501
Uršič, L., & Nemec, M. (2019). Permanent magnet synchronous machine demagnetisation prevention and torque
estimation control considering rotor temperature. IET Power Electronics, 12(9), 2161–2169. https://doi
Ghanim, A. S., & Alsammak, A. N. B. (2023). DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid. Journal of Optimization and Decision Making, 2(1), 199-206.
AMA
Ghanim AS, Alsammak ANB. DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid. JODM. June 2023;2(1):199-206.
Chicago
Ghanim, Ammar Shamil, and Ahmed Nasser B. Alsammak. “DQ Model of PMSG With The Most Proficient Dynamic Analysis in Standalone Grid”. Journal of Optimization and Decision Making 2, no. 1 (June 2023): 199-206.
EndNote
Ghanim AS, Alsammak ANB (June 1, 2023) DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid. Journal of Optimization and Decision Making 2 1 199–206.
IEEE
A. S. Ghanim and A. N. B. Alsammak, “DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid”, JODM, vol. 2, no. 1, pp. 199–206, 2023.
ISNAD
Ghanim, Ammar Shamil - Alsammak, Ahmed Nasser B. “DQ Model of PMSG With The Most Proficient Dynamic Analysis in Standalone Grid”. Journal of Optimization and Decision Making 2/1 (June 2023), 199-206.
JAMA
Ghanim AS, Alsammak ANB. DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid. JODM. 2023;2:199–206.
MLA
Ghanim, Ammar Shamil and Ahmed Nasser B. Alsammak. “DQ Model of PMSG With The Most Proficient Dynamic Analysis in Standalone Grid”. Journal of Optimization and Decision Making, vol. 2, no. 1, 2023, pp. 199-06.
Vancouver
Ghanim AS, Alsammak ANB. DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid. JODM. 2023;2(1):199-206.