Research Article
BibTex RIS Cite

İklim Koşulları Kamerun’daki Vergi Gelirlerini Etkiliyor Mu? Ardl Kantil Yaklaşımı Buguları

Year 2024, Volume: 9 Issue: 2, 188 - 197, 30.12.2024

Abstract

Bu çalışma, Kamerun’daki iklim değişikliği ile vergi gelirleri arasındaki kantil eşbütünleşme ilişkisini incelemektedir. 1980-2015 dönemi için Kantil Otoregresif Dağınık Gecikmeli (QARDL) modeli kullanılmıştır. Sonuçlar, değişkenler arasındaki ilişkinin kantillere bağlı olduğunu göstermektedir. Bu nedenle, iklim değişikliği daha yüksek kantillerde vergi gelirlerindeki iyileşmeye olumsuz katkıda bulunmaktadır. Ayrıca, tarım belirli kantillerde vergi gelirlerindeki artışa olumsuz katkıda bulunmaktadır. İklim değişikliğindeki (sıcaklık ve yağış) ve vergi gelirlerindeki değişimler, tarımdaki geçmiş ve mevcut değişikliklerden sorumludur. Sonuçlar, sıradan en küçük kareler yöntemiyle bulunanlarla uyumludur. Bu bulgular, Kamerun bağlamında hükümetler ve diğer paydaşlar için önemli politika çıkarımlarına sahiptir. Vergi gelirlerinin seviyesini iyileştirmeye ve mükemmel bir çevre politikası uygulamaya yardımcı olacaklardır.

References

  • Acevedo M. S., Baccianti C., Mrkaic M., Novta N., Pugacheva E. & Topalova P. (2018). Weather Shocks and Output in Low-Income Countries: The role of policies and adaptation. IMF Working Paper, International Monetary Fund. Washington, DC.
  • Albimana, M.M. & Hemedb, I.M. (2022). The determinants of tax revenues among EAC member. African Tax and Customs Review, 5 (1), 11-19.
  • Asongu, S. A., Adegboye, A., & Nnanna, J. (2021). Promoting female economic inclusion for tax performance in sub‐Saharan Africa. Economic Analysis and Policy, 69, 159–170.
  • Bachner, G. & Bednar-Friedl, B. (2019). The effects of climate change impact budgets and implications of fiscal counterbalancing instruments. Environmental Modeling & Assessment, 24, 121-142.
  • Botzen, W. W., Deschenes, O. & Sander, M. (2019). The economic impacts of natural disasters: a review of models and empirical studies. Rev Environ Econ Policy, 13 (2), 167-188.
  • Caldeira, E., Compaoré, A., Dama, A.A., Mansour, M. & Rota-Graziosi, G. (2019). Effort fiscal en Afrique Subsaharienne : les résultats d’une nouvelle base de données. Revue d’Economie du développement, 27(4), De Boeck Supérieur.
  • Cho, J.S, Kim, T., & Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modeling framework. J Econ, 188, 281–300.
  • Dickey D. A. & Fuller W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74, 427. https://doi.org/10.2307/2286348.
  • He, X., Mishra, S., Aman, A., Shahbaz, M., Razzaq, A., & Sharif, A. (2021). The linkage between clean energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from QARDL approach. Resources Policy, 72, 102021.
  • Jahanger, A., Yu, Y., Awan, A., Chishti, M.Z., Radulescu, M., & Balsalobre-Lorente, D. (2022). The impact of hydropower energy in Malaysia under the EKC Hypothesis: Evidence from quantile ARDL approach. SAGE Open, 12(3), 21582440221.
  • Kahn, M.E., Mohaddes, K., Ng R.N., Pesaran, M.H., Raissi, M. & Yang, J.C. (2021). Long term macroeconomic effects of climate change: a cross-country analysis. Energy Economic, 104, 1-13.
  • Krogstrup, S. & Oman, W. (2019). Macroeconomic and financial policies for climate change mitigation: a review of literature. IMF Working Paper, WP/19/185, International Monetary Fund (IMF). Monetary and Capital Markets Department, Research Department.
  • Luqman, M., Li, Y., Khan, S.U-D & Ahmad, N. (2021). Quantile nexus between human development, energy production and economic growth: the role of corruption in the case of Pakistan. Environmental Science and Pollution Research, 28, 61460-61476.
  • McDougall, W. (2005), The Group Mind: A Sketch of the principles of collective psychology with some attempt to apply them to the interpretation of national life and character. Whitefish, MT: Kessinger Publishing, LLC.
  • Montesquieu, C. (1989), The Spirit of laws in A Cohler, B. C. Miller, & H.S. Stone (Eds.), Cambridge Texts in the History of Political Thought, Edinburgh, Cambridge University Press. (Original work published 1750).
  • Mutascu, M. (2014). Influence of climate conditions on Tax revenues. Contemporary Economics, 8(3), 315-328.
  • Nordhaus, W.D. (2006), Geography and macroeconomics: New data and finding. PNAS, 103 (10), 3510-3517.
  • Ongo Nkoa B.E. & Song, J. S. (2022). Les canaux de transmission des effets des TIC sur la mobilisation des recettes fiscales en Afrique. Revue Africaine de Développement, 1-22. DOI: 10.1111/1467-8268.12650
  • Phillips, P.C.B & Perron, P. (1988), « Testing for a unit root in time series regression ». Biometrika 75:335. https://doi.org/10.2307/2336182.
  • Shahzad, SJH., Hurley, D. & Ferrer, R. U.S. (2020). Stock prices and macroeconomic fundamentals: Fresh evidence using the quantile ARDL approach. Int J Fin Econ. 1–19. https://doi.org/10.1002/ijfe.1976
  • Shin, Y., YU, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In: Sickles RC, Horrace WC (eds) Festschrift in Honor of peter Schmidt: Econometric Methods and Applications. Springer, New York, pp 281 – 314.
  • Shita, A., Kumar, N., & Singh, S. (2021). Technology, poverty and income distribution nexus: The case of fertilizer adoption in Ethiopia. African Development Review, 33(4), 742–755.
  • Smith, A. (1776), An Inquiry into Nature and Causes of the Wealth of Nations. (Vols.2) E. Canaan (ED), Chicago, II: University of Chicago Press.
  • World Bank (2022). World Development Indicator Database.

Do climatic conditions affect tax revenues in Cameroon? Evidence from the ARDL quantile approach

Year 2024, Volume: 9 Issue: 2, 188 - 197, 30.12.2024

Abstract

This study examines the quantile cointegration relationship between climate change and tax revenues in Cameroon. The Quantile Autoregressive Distruted Lag (QARDL) model is used, over the period 1980-2015. The results indicate that the relationship between the variables depends on the quantile. Thus, climate change contributes negatively to the improvement in tax revenue at higher quantiles. In addition, agriculture contributes negatively to the increase in tax revenue at certain quantiles. Variations in climate change (temperature and precipitation) and tax revenues are responsible for past and current changes in agriculture. The results are in line with those found by the ordinary least squares method. These findings have important policy implications for governments and other stakeholders in the Cameroonian context. They will help to improve the level of tax revenues and implement an excellent environmental policy.

References

  • Acevedo M. S., Baccianti C., Mrkaic M., Novta N., Pugacheva E. & Topalova P. (2018). Weather Shocks and Output in Low-Income Countries: The role of policies and adaptation. IMF Working Paper, International Monetary Fund. Washington, DC.
  • Albimana, M.M. & Hemedb, I.M. (2022). The determinants of tax revenues among EAC member. African Tax and Customs Review, 5 (1), 11-19.
  • Asongu, S. A., Adegboye, A., & Nnanna, J. (2021). Promoting female economic inclusion for tax performance in sub‐Saharan Africa. Economic Analysis and Policy, 69, 159–170.
  • Bachner, G. & Bednar-Friedl, B. (2019). The effects of climate change impact budgets and implications of fiscal counterbalancing instruments. Environmental Modeling & Assessment, 24, 121-142.
  • Botzen, W. W., Deschenes, O. & Sander, M. (2019). The economic impacts of natural disasters: a review of models and empirical studies. Rev Environ Econ Policy, 13 (2), 167-188.
  • Caldeira, E., Compaoré, A., Dama, A.A., Mansour, M. & Rota-Graziosi, G. (2019). Effort fiscal en Afrique Subsaharienne : les résultats d’une nouvelle base de données. Revue d’Economie du développement, 27(4), De Boeck Supérieur.
  • Cho, J.S, Kim, T., & Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modeling framework. J Econ, 188, 281–300.
  • Dickey D. A. & Fuller W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74, 427. https://doi.org/10.2307/2286348.
  • He, X., Mishra, S., Aman, A., Shahbaz, M., Razzaq, A., & Sharif, A. (2021). The linkage between clean energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from QARDL approach. Resources Policy, 72, 102021.
  • Jahanger, A., Yu, Y., Awan, A., Chishti, M.Z., Radulescu, M., & Balsalobre-Lorente, D. (2022). The impact of hydropower energy in Malaysia under the EKC Hypothesis: Evidence from quantile ARDL approach. SAGE Open, 12(3), 21582440221.
  • Kahn, M.E., Mohaddes, K., Ng R.N., Pesaran, M.H., Raissi, M. & Yang, J.C. (2021). Long term macroeconomic effects of climate change: a cross-country analysis. Energy Economic, 104, 1-13.
  • Krogstrup, S. & Oman, W. (2019). Macroeconomic and financial policies for climate change mitigation: a review of literature. IMF Working Paper, WP/19/185, International Monetary Fund (IMF). Monetary and Capital Markets Department, Research Department.
  • Luqman, M., Li, Y., Khan, S.U-D & Ahmad, N. (2021). Quantile nexus between human development, energy production and economic growth: the role of corruption in the case of Pakistan. Environmental Science and Pollution Research, 28, 61460-61476.
  • McDougall, W. (2005), The Group Mind: A Sketch of the principles of collective psychology with some attempt to apply them to the interpretation of national life and character. Whitefish, MT: Kessinger Publishing, LLC.
  • Montesquieu, C. (1989), The Spirit of laws in A Cohler, B. C. Miller, & H.S. Stone (Eds.), Cambridge Texts in the History of Political Thought, Edinburgh, Cambridge University Press. (Original work published 1750).
  • Mutascu, M. (2014). Influence of climate conditions on Tax revenues. Contemporary Economics, 8(3), 315-328.
  • Nordhaus, W.D. (2006), Geography and macroeconomics: New data and finding. PNAS, 103 (10), 3510-3517.
  • Ongo Nkoa B.E. & Song, J. S. (2022). Les canaux de transmission des effets des TIC sur la mobilisation des recettes fiscales en Afrique. Revue Africaine de Développement, 1-22. DOI: 10.1111/1467-8268.12650
  • Phillips, P.C.B & Perron, P. (1988), « Testing for a unit root in time series regression ». Biometrika 75:335. https://doi.org/10.2307/2336182.
  • Shahzad, SJH., Hurley, D. & Ferrer, R. U.S. (2020). Stock prices and macroeconomic fundamentals: Fresh evidence using the quantile ARDL approach. Int J Fin Econ. 1–19. https://doi.org/10.1002/ijfe.1976
  • Shin, Y., YU, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In: Sickles RC, Horrace WC (eds) Festschrift in Honor of peter Schmidt: Econometric Methods and Applications. Springer, New York, pp 281 – 314.
  • Shita, A., Kumar, N., & Singh, S. (2021). Technology, poverty and income distribution nexus: The case of fertilizer adoption in Ethiopia. African Development Review, 33(4), 742–755.
  • Smith, A. (1776), An Inquiry into Nature and Causes of the Wealth of Nations. (Vols.2) E. Canaan (ED), Chicago, II: University of Chicago Press.
  • World Bank (2022). World Development Indicator Database.
There are 24 citations in total.

Details

Primary Language English
Subjects Public Economics - Taxation and Revenue
Journal Section Research Article
Authors

Sabine Nadine Ekamena Ntsama 0000-0002-8756-2190

Bybert Dr Moudjaré Helgath 0000-0001-7125-0603

Early Pub Date December 15, 2024
Publication Date December 30, 2024
Submission Date August 20, 2024
Acceptance Date November 19, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Ekamena Ntsama, S. N., & Dr Moudjaré Helgath, B. (2024). Do climatic conditions affect tax revenues in Cameroon? Evidence from the ARDL quantile approach. JOEEP: Journal of Emerging Economies and Policy, 9(2), 188-197.

JOEEP is published as two issues per year June and December and all publication policies and processes are conducted according to the international standards. JOEEP accepts and publishes the research articles in the fields of economics, political economy, fiscal economics, applied economics, business economics, labour economics and econometrics. JOEEP, without depending on any institution or organization, is a non-profit journal that has an International Editorial Board specialist on their fields. All “Publication Process” and “Writing Guidelines” are explained in the related title and it is expected from authors to Show a complete match to the rules. JOEEP is an open Access journal.