Derleme
BibTex RIS Kaynak Göster

Bakteriyel Biyofilm Oluşumunu Kontrol Eden Parametreler ve Moleküler Düzeyde Engelleyici Stratejiler

Yıl 2024, Cilt: 4 Sayı: 3, 83 - 90, 30.09.2024

Öz

Bakteriyel biyofilm oluşumu, bakterilerin yüzeylere bağlanarak ve kendilerini ekstraselüler matrikse gömerek oluşturdukları karmaşık ve dinamik bir süreçtir. Biyofilm tabakaları, sağlık, gıda, endüstri ve çevre alanlarında ciddi problemlere neden olmaktadır. Bu nedenle, biyofilm oluşumunu kontrol etmek için etkin parametrelerin belirlenmesi önemli bir araştırma alanıdır.
Hem çevresel hem bakteriye özgü faktörler biyofilm oluşumunu kontrol etmektedir. Çevresel faktörler arasında bakterinin yerleştiği yüzeyin özellikleri (pürüz, hidrofobik karakter, yüzey yükü vb.), pH, sıvı akış hızı, besin konsantrasyonu ve oksijen seviyesi sayılabilir. Örneğin, besinlerin yüksek konsantrasyonu, düşük akış hızları ve yüzeyin hidrofobik olması biyofilm oluşumunu teşvik edebilirken, düşük besin konsantrasyonları, yüksek akış hızları ve yüzeyin hidrofilik karakteri biyofilm oluşumunu azaltmaktadır. Bakteriye özgü faktörler ise genetik faktörler, bakterinin hareketliliği (motilite) ve çoğunluk algılama (quorum sensing) özellikleridir; bu özellikler bakterilere özgü bir ikincil haberci olan halkalı dimerik guanozin monofosfat (c-di-GMP) başta olmak üzere çeşitli ikincil haberciler tarafından kontrol edilmektedir.
Bakterilerin davranışlarını ve biyofilm oluşturma kapasitelerini moleküler düzeyde anlamak, biyofilm oluşumunu ve dolayısıyla bakteriyel enfeksiyonları engellemek için gerekli bir stratejidir. Özellikle c-di-GMP ile etkileşebilecek moleküllerin sentezi ve kullanımı üzerine pek çok çalışma mevcuttur. Bu çalışma, biyofilm oluşumunu kontrol eden parametrelerin tamamını kapsamakla birlikte özellikle c-di-GMP’nin kontrol ettiği bakteriyel özellikleri mercek altına alarak c-di-GMP ile etkileşim üzerinden biyofilm oluşumunu engelleme stratejileri üzerinde duracaktır.
Sonuç olarak, bakteriyel biyofilm oluşumunu kontrol etmek için etkin parametrelerin belirlenmesi, çeşitli endüstriyel, tıbbi ve çevresel uygulamalarda önemli bir araştırma alanını oluşturur. Bu parametrelerin anlaşılması, biyofilm oluşumunu kontrol etmek için daha etkili stratejilerin geliştirilmesine olanak tanır ve bu da çeşitli uygulama alanlarında önemli faydalar sağlayabilir.

Destekleyen Kurum

Marmara Üniversitesi BAPKO

Proje Numarası

TYL-2023-11089

Teşekkür

Bu çalışma, Marmara Üniversitesi BAPKO tarafından TYL-2023-11089 sayılı proje ile desteklenmiştir.

Kaynakça

  • [1] Bai G, McCue LA, McDonough KA. Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. Journal of Bacteriology. 2005;187:7795-7804.
  • [2] Bezek K, Nipič D, Torkar KG, Oder M, Dražić G, Abram A, Žibert J, Raspor P, Bohinc K. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. The Journal of Bioadhesion and Biofilm Research. 2019;35(3):1–11.
  • [3] Botsford JL. Cyclic nucleotides in procaryotes. Microbiological Reviews. 1981;45:620-642.
  • [4] Cashel M, Gentry D, Hernandez V, Vinella D. The Stringent Response, in Escherichia coli and Salmonella: Cellular and Molecular Biology, ASM Press, 2nd edition, 1996.
  • [5] Chow CET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. The ISME Journal. 2014;8:816-829.
  • [6] Corrigan RM, Abbott JC, Burhenne H, Kaever V, Grundling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathogens. 2011;7:e1002217.
  • [7] Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriolgy. 2003;185:1027-1036.
  • [8] De Cian A, Cristofar G, Reichenbach P, Lemos E, Monchaud D, Teulade-Fichou M, Shin-Ya K, Lacroix L, Lingner J, Mergny JL. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences. 2007;104:17347-17352.
  • [9] Egli M, Gessner RV, Williams LD, Quigley GJ, van der Marel GA, van Boom JH, Rich A, Frederick CA. Atomic-resolution structure of the cellulose synthase regulator cyclic diguanylic acid. Proceedings of the National Academy of Sciences. 1990;87:3235-3239.
  • [10] El Othmany R, Zahir H, Ellouali M, Latrache H. Current understanding on adhesion and biofilm development in actinobacteria. International Journal of Microbiology. 2021;2021:1-11.
  • [11] Elhariry HM. Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions. Global Journal of Biotechnology and Biochemistry, 2008;3(2):69-78.
  • [12] Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microbial Ecology. 2013;65:860–868.
  • [13] Folini M, Pivetta C, Zagotto G, De Marco C, Palumbo M et al. Remarkable interference with telomeric function by a G-quadruplex selective bisantrene regioisomer. Biochemical Pharmacology. 2010;79:1781-1790.
  • [14] Fujishige NA, Kapadia NN, Hirsch AM. 2006. A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. Botanical Journal of the Linnean Society. 2006;150(1):79-88.
  • [15] Garcia-Chaves MC, Cottrell MT, Kirchman DL, Derry AM, Bogard MJ, del Giorgio PA. Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquatic Microbial Ecology. 2015;76:71–83.
  • [16] Gomes LC, Mergulhão FJM. A selection of platforms to evaluate surface adhesion and biofilm formation in controlled hydrodynamic conditions. Microorganisms. 2021;9(9):1993.
  • [17] Göker F. 3,6-Diamino akridin türevlerinin serum albüminlerle etkileşiminin floresans sönüm yöntemi ile incelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, 2006, Ankara.
  • [18] Gün İ, Ekinci FY. Biyofilmler: Yüzeylerdeki mikrobiyal yaşam. The Journal of Food. 2009;34(3):165-173.
  • [19] Gürlük N, Koluman A, Kahraman T. Gıda işletmelerinde biyofilm sorunu ve gümüş nanopartikül uygulamaları. Aydın Gastronomy. 2022;6(1):51-63. [20] Hahn MW, Hofle MG. Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microbial Ecology. 2000;39:175–185.
  • [21] Hahn MW, Hofle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbial Ecology. 2001;35:113–121.
  • [22] Hançer Aydemir D. Bakteriyal biyofilmlerin biyolojik önemi ve etkili kontrol stratejileri. Turkis Journal of Life Sciences. 2018;3(1):218-230.
  • [23] Iliadis I, Daskalopoulou A, Simões M, Giaouris E. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International. 2018;107:10–18. [24] Jurgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.
  • [25] Justesen J, Lund T, Pedersen FS, Kjeldgaard NO. The physiology of stringent factor (ATP: GTP 3′-diphosphotransferase) in Escherichia coli. Biochimie. 1986;68:715-722.
  • [26] Kalia D, Merey G, Nakayama S, Zeng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide c-di-GMP, c-di- AMP, cGMP, cAMP, (p)ppGpp Signaling in Bacteria and Implications in Pathogenesis”, Chemical Society Reviews. 2013;42(1):305-341.
  • [27] Kartal MO, Baran Ekinci M, Poyraz B. Biyofilm yapısı ve önlenmesi. Akademik Gıda. 2021;19(3):353-363. [28] Kelsey I, Nakayama S, Sintim HO. Diamidinium and iminium aromatics as new aggregators of the bacterial signaling molecule, c-di-GMP. Bioorganic & Medicinal Chemistry Letters. 2012;22: 881-885.
  • [29] Khalil MA, Alorabi JA, Al-Otaibi LM, Ali SS, Elsilk SE. Antibiotic resistance and biofilm formation in enterococcus spp. isolated from urinary tract infections. Pathogens. 2022;12(1):34.
  • [30] Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine. 2013;3(4):a010306.
  • [31] Köremezli A, Kariptaş E, Erdem B. Bakteriyel mikroorganizmalarda bir savunma sistemi: “Biyofilm”, Black Sea Journal of Health Science, 2022;5(1):153-161.
  • [32] Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neeley AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)- cyclic-GMP in virulence. Proceedings of the National Academy of Sciences. 2006;103:2839-2844.
  • [33] Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiolgy. 1998;42:9-27.
  • [34] Lapouge K, Schubert M, Allain FH, Haas D. Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour. Molecular Microbiology. 2008;67:241–253.
  • [35] Le Gresley A, Abdullah A, Desai P, Ghosh U, Gollapalli U, Kiran M, Lafon S. Scope of the heck reaction in the synthesis of a new family of anthracene diacrylamide G-Quadruplex ligands. Synthetic Communications. 2011;41:2483-2492.
  • [36] Lerman LS. Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology. 1961;3:18-30.
  • [37] Liang W, Sultan SZ, Silva AJ, Benitez JA. Cyclic AMP post-transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing. FEBS Letters. 2008;582:3744-3750.
  • [38] Lim Y, Jan M, Luong TT, Lee CY. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. Journal of Bacteriolgy. 2004;186:722-729.
  • [39] Liu H, Xiao Y, Nie H, Huang Q, Chen W. Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiological Research. 2017;204:1-8.
  • [40] López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2(7):a000398.
  • [41] Luo Y, Helmann JD. Analysis of the role of Bacillus subtilis σM in β‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis. Molecular Microbiolgy. 2012;83:623-639.
  • [42] Martinez S, Garcia JG, Williams R, Elmassry M, West A et al. Lactobacilli spp.: real-time evaluation of biofilm growth. BMC Microbiology. 2020;20(64):1-9.
  • [43] Matz C, Jurgens K. High motility reduces grazing mortality of planktonic bacteria. Applied Environmental Microbiology. 2005;71:921-929.
  • [44] Moraes JO, Cruz EA, Souza EGF, Oliveira TCM, Alvarenga VO, Peña WEL, Sant’Ana AS, Magnani M. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. International Journal of Food Microbiology. 2018;281:90–100.
  • [45] Morgenroth E, Wilderer PA. Influence of detachment mechanisms on competition in biofilms. Water Research. 2000;34:417-426.
  • [46] Nakayama S, Kelsey I, Wang JX, Sintim HO. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chemical Communications. 2011;47:4766-4768.
  • [47] O’Toole G, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology. 1998;30: 295-304.
  • [48] Ölmez Z. Süt sanayisinde biyofilm oluşturan mikroorganizmalar ve biyofilm oluşumunun önlenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 2009, Isparta.
  • [49] Özdemir Fİ, Korkmaz T. Çevresel koşulların termofilik geobacillus kaustophilus’da biyofilm oluşumu üzerinde etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023;13(3):1562-1572.
  • [50] Pan Y, Breidt F, Gorski L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes Serotype 1/2a and 4b strains. Applied Environmental Microbiology. 2010;76:1433–1441.
  • [51] Petrova OE, Sauer K. Escaping the biofilm in more than one way: desorption, detachment or dispersion, Current Opinion in Microbiology. 2016;30:67–78.
  • [52] Poulsen LV. Microbial biofilm in food processing. LWT-Food Science and Technology. 1999;32(6):321-326.
  • [53] Pratt JT, Tamayo R, Tischler AD, Camilli A. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. The Journal of Biological Chemistry. 2007;282: 12860-12870.
  • [54] Qi Y, Rao F, Luo Z, Liang ZX. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in Ax DGC2 from Acetobacter xylinum. Biochemistry. 2009;48:10275-10285.
  • [55] Ray B, Bhunia A. Temel Gıda Mikrobiyolojisi. 5.baskı, 2016, Ankara, ss73-78.
  • [56] Read MA, Harrison R, Romagnoli B, Tanious FA, Gowan SM, Reszka A, Wilson WD, Kelland L, Neidle S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proceedings of the National Academy of Sciences. 2001;98:4844-4849.
  • [57] Read MA, Wood AA, Harrison JR, Gowan SM, Kelland LR. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: structure-activity relationships. Journal of Medicinal Chemistry. 1999;42:4538-4546.
  • [58] Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology. 2003;48:933-946.
  • [59] Romling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system, Molecular Microbiology. 2005;57:629-639.
  • [60] Romling U. Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Science Signaling, 2008;1(33):pe39.
  • [61] Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, Vroom E, Marel GA, Boom JH, Benziman M. High intracellular concentrations of c-di-GMP result in the expression of adhesive matrix components and biofilm formation. Nature. 1987;325:279-281.
  • [62] Salgar-Chaparro SJ, Lepkova K, Pojtanabuntoeng T, Darwin A, Machuca LL. Nutrient level determines biofilm characteristics and the subsequent impact on microbial corrosion and biocide effectiveness. Applied and Environmental Microbiology. 2020;86(7): e02885-19.
  • [63] Satpathy S, Sen SK, Pattanaik S, Raut S. Review on bacterial biofilm: An universal cause of contamination. Biocatalaysis and Agricultural Biotechnology. 2016;7:56–66.
  • [64] Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology. 2022;20:608–620.
  • [65] Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek. 2002;81:293–308.
  • [66] Schmidt A, Liu M. Chapter Four: Recent Advances in The Chemistry of Acridines. Advances in Heterocyclic Chemistry, Elsevier, London, USA, 2015, 287-353.
  • [67] Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Reviews Microbiology. 2009;7:724-735.
  • [68] Shibuya M, Takebe Y, Kaziro Y. A possible involvement of cya gene in the synthesis of cyclic guanosine 3′: 5′-monophosphate in E. coli. Cell. 1977;12:521–528.
  • [69] Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied Environmental Microbiology. 2001;67:2723-2733.
  • [70] Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. Journal of Dental Research. 2015;94(8):1027-1034.
  • [71] Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation, Molecular Microbiology. 2004;52(4):917-924.
  • [72] Stewart PS. A Model of biofilm detachment. Biotechonology and Bioengineering. 1993;41(1):111-117.
  • [73] Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T et al. The role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertusis. Microbiology. 2013;159:1379-1389.
  • [74] Takahashi K, Kasai K, Ochi K. Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proceedings of the National Academy of Sciences. 2004;101:4320-4324.
  • [75] Ulus R. Karbonik anhidraz inhibitörü olarak yeni akridin sülfanamit türevlerinin sentezi ve karakterizasyonları. Yüksek Lisans Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, 2012, Kütahya.
  • [76] Villanueva VD, Font J, Schwartz T, Romaní AM. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects, Biofouling. 2011;27(1):59-71.
  • [77] Waldrop R, McLare A, Calar F, McLemor R. Biofilm growth has a threshold response to glucose in vitro. Clinical Orthopaedics and Related Research. 2014;472(11):3305-3310.
  • [78] Wan X, Tuckerman JR, Saito JA, Freitas TA, Newhouse JS et al. Globins synthesize the second messenger bis-(3′–5′)-cyclic diguanosine monophosphate in bacteria. Journal of the American Chemical Society. 2009;388: 262-270.
  • [79] Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environmental Microbiology. 2005;7:1593–1601.
  • [80] Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. Journal of Food Sciences. 2010;75:M580-M585.
  • [81] Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus epidermidis and quinolones. Diagnostic Microbiology and Infectious Disease. 2001;40(3):79-89.
  • [82] Zhang Z, Kim S, Gaffney BL, Jones RA. Polymorphism of the signaling molecule c-di-GMP. Journal of the American Chemical Society. 2006;128:7015-7024.

Parameters Controlling Bacterial Biofilm Formation and Inhibitory Strategies at Molecular Level

Yıl 2024, Cilt: 4 Sayı: 3, 83 - 90, 30.09.2024

Öz

Bacterial biofilm formation is a complex and dynamic process in which bacteria attach to surfaces and embed themselves in the extracellular matrix. Biofilm layers cause serious problems in health and food sector and the environment. Therefore, determining effective parameters to control biofilm formation is an important area of research.
Both environmental and bacteria-specific factors control biofilm formation. Environmental factors include the characteristics of the surface on which the bacteria settle (roughness, hydrophobic character, surface charge, etc.), pH, liquid flow rate, nutrient concentration and oxygen level. For instance, high concentration of nutrients, low flow rates and hydrophobicity of the surface may promote biofilm formation, while low nutrient concentrations, high flow rates and hydrophilic character of the surface reduce biofilm formation. Bacteria-specific factors are genetic factors, motility and quorum sensing properties of the bacteria; these properties are controlled by various secondary messengers, especially cyclic dimeric guanosine monophosphate (c-di-GMP), which is specific to bacteria.
Understanding the behavior of bacteria and their biofilm-forming capacity at the molecular level is a necessary strategy to prevent biofilm formation and thus bacterial infections. There are several studies on the synthesis and use of molecules that interact with c-di-GMP. Although this study covers all the parameters that control biofilm formation, it will focus on strategies to prevent biofilm formation through interaction with c-di-GMP.
Consequently, determining effective parameters to control bacterial biofilm formation constitutes an important area of research in various industrial, medical and environmental applications. Understanding these parameters allows the development of more effective strategies to control biofilm formation, which can provide significant benefits in various application areas.

Proje Numarası

TYL-2023-11089

Kaynakça

  • [1] Bai G, McCue LA, McDonough KA. Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. Journal of Bacteriology. 2005;187:7795-7804.
  • [2] Bezek K, Nipič D, Torkar KG, Oder M, Dražić G, Abram A, Žibert J, Raspor P, Bohinc K. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. The Journal of Bioadhesion and Biofilm Research. 2019;35(3):1–11.
  • [3] Botsford JL. Cyclic nucleotides in procaryotes. Microbiological Reviews. 1981;45:620-642.
  • [4] Cashel M, Gentry D, Hernandez V, Vinella D. The Stringent Response, in Escherichia coli and Salmonella: Cellular and Molecular Biology, ASM Press, 2nd edition, 1996.
  • [5] Chow CET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. The ISME Journal. 2014;8:816-829.
  • [6] Corrigan RM, Abbott JC, Burhenne H, Kaever V, Grundling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathogens. 2011;7:e1002217.
  • [7] Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriolgy. 2003;185:1027-1036.
  • [8] De Cian A, Cristofar G, Reichenbach P, Lemos E, Monchaud D, Teulade-Fichou M, Shin-Ya K, Lacroix L, Lingner J, Mergny JL. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences. 2007;104:17347-17352.
  • [9] Egli M, Gessner RV, Williams LD, Quigley GJ, van der Marel GA, van Boom JH, Rich A, Frederick CA. Atomic-resolution structure of the cellulose synthase regulator cyclic diguanylic acid. Proceedings of the National Academy of Sciences. 1990;87:3235-3239.
  • [10] El Othmany R, Zahir H, Ellouali M, Latrache H. Current understanding on adhesion and biofilm development in actinobacteria. International Journal of Microbiology. 2021;2021:1-11.
  • [11] Elhariry HM. Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions. Global Journal of Biotechnology and Biochemistry, 2008;3(2):69-78.
  • [12] Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microbial Ecology. 2013;65:860–868.
  • [13] Folini M, Pivetta C, Zagotto G, De Marco C, Palumbo M et al. Remarkable interference with telomeric function by a G-quadruplex selective bisantrene regioisomer. Biochemical Pharmacology. 2010;79:1781-1790.
  • [14] Fujishige NA, Kapadia NN, Hirsch AM. 2006. A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. Botanical Journal of the Linnean Society. 2006;150(1):79-88.
  • [15] Garcia-Chaves MC, Cottrell MT, Kirchman DL, Derry AM, Bogard MJ, del Giorgio PA. Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquatic Microbial Ecology. 2015;76:71–83.
  • [16] Gomes LC, Mergulhão FJM. A selection of platforms to evaluate surface adhesion and biofilm formation in controlled hydrodynamic conditions. Microorganisms. 2021;9(9):1993.
  • [17] Göker F. 3,6-Diamino akridin türevlerinin serum albüminlerle etkileşiminin floresans sönüm yöntemi ile incelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, 2006, Ankara.
  • [18] Gün İ, Ekinci FY. Biyofilmler: Yüzeylerdeki mikrobiyal yaşam. The Journal of Food. 2009;34(3):165-173.
  • [19] Gürlük N, Koluman A, Kahraman T. Gıda işletmelerinde biyofilm sorunu ve gümüş nanopartikül uygulamaları. Aydın Gastronomy. 2022;6(1):51-63. [20] Hahn MW, Hofle MG. Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microbial Ecology. 2000;39:175–185.
  • [21] Hahn MW, Hofle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbial Ecology. 2001;35:113–121.
  • [22] Hançer Aydemir D. Bakteriyal biyofilmlerin biyolojik önemi ve etkili kontrol stratejileri. Turkis Journal of Life Sciences. 2018;3(1):218-230.
  • [23] Iliadis I, Daskalopoulou A, Simões M, Giaouris E. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International. 2018;107:10–18. [24] Jurgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.
  • [25] Justesen J, Lund T, Pedersen FS, Kjeldgaard NO. The physiology of stringent factor (ATP: GTP 3′-diphosphotransferase) in Escherichia coli. Biochimie. 1986;68:715-722.
  • [26] Kalia D, Merey G, Nakayama S, Zeng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide c-di-GMP, c-di- AMP, cGMP, cAMP, (p)ppGpp Signaling in Bacteria and Implications in Pathogenesis”, Chemical Society Reviews. 2013;42(1):305-341.
  • [27] Kartal MO, Baran Ekinci M, Poyraz B. Biyofilm yapısı ve önlenmesi. Akademik Gıda. 2021;19(3):353-363. [28] Kelsey I, Nakayama S, Sintim HO. Diamidinium and iminium aromatics as new aggregators of the bacterial signaling molecule, c-di-GMP. Bioorganic & Medicinal Chemistry Letters. 2012;22: 881-885.
  • [29] Khalil MA, Alorabi JA, Al-Otaibi LM, Ali SS, Elsilk SE. Antibiotic resistance and biofilm formation in enterococcus spp. isolated from urinary tract infections. Pathogens. 2022;12(1):34.
  • [30] Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine. 2013;3(4):a010306.
  • [31] Köremezli A, Kariptaş E, Erdem B. Bakteriyel mikroorganizmalarda bir savunma sistemi: “Biyofilm”, Black Sea Journal of Health Science, 2022;5(1):153-161.
  • [32] Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neeley AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)- cyclic-GMP in virulence. Proceedings of the National Academy of Sciences. 2006;103:2839-2844.
  • [33] Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiolgy. 1998;42:9-27.
  • [34] Lapouge K, Schubert M, Allain FH, Haas D. Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour. Molecular Microbiology. 2008;67:241–253.
  • [35] Le Gresley A, Abdullah A, Desai P, Ghosh U, Gollapalli U, Kiran M, Lafon S. Scope of the heck reaction in the synthesis of a new family of anthracene diacrylamide G-Quadruplex ligands. Synthetic Communications. 2011;41:2483-2492.
  • [36] Lerman LS. Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology. 1961;3:18-30.
  • [37] Liang W, Sultan SZ, Silva AJ, Benitez JA. Cyclic AMP post-transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing. FEBS Letters. 2008;582:3744-3750.
  • [38] Lim Y, Jan M, Luong TT, Lee CY. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. Journal of Bacteriolgy. 2004;186:722-729.
  • [39] Liu H, Xiao Y, Nie H, Huang Q, Chen W. Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiological Research. 2017;204:1-8.
  • [40] López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2(7):a000398.
  • [41] Luo Y, Helmann JD. Analysis of the role of Bacillus subtilis σM in β‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis. Molecular Microbiolgy. 2012;83:623-639.
  • [42] Martinez S, Garcia JG, Williams R, Elmassry M, West A et al. Lactobacilli spp.: real-time evaluation of biofilm growth. BMC Microbiology. 2020;20(64):1-9.
  • [43] Matz C, Jurgens K. High motility reduces grazing mortality of planktonic bacteria. Applied Environmental Microbiology. 2005;71:921-929.
  • [44] Moraes JO, Cruz EA, Souza EGF, Oliveira TCM, Alvarenga VO, Peña WEL, Sant’Ana AS, Magnani M. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. International Journal of Food Microbiology. 2018;281:90–100.
  • [45] Morgenroth E, Wilderer PA. Influence of detachment mechanisms on competition in biofilms. Water Research. 2000;34:417-426.
  • [46] Nakayama S, Kelsey I, Wang JX, Sintim HO. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chemical Communications. 2011;47:4766-4768.
  • [47] O’Toole G, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology. 1998;30: 295-304.
  • [48] Ölmez Z. Süt sanayisinde biyofilm oluşturan mikroorganizmalar ve biyofilm oluşumunun önlenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 2009, Isparta.
  • [49] Özdemir Fİ, Korkmaz T. Çevresel koşulların termofilik geobacillus kaustophilus’da biyofilm oluşumu üzerinde etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023;13(3):1562-1572.
  • [50] Pan Y, Breidt F, Gorski L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes Serotype 1/2a and 4b strains. Applied Environmental Microbiology. 2010;76:1433–1441.
  • [51] Petrova OE, Sauer K. Escaping the biofilm in more than one way: desorption, detachment or dispersion, Current Opinion in Microbiology. 2016;30:67–78.
  • [52] Poulsen LV. Microbial biofilm in food processing. LWT-Food Science and Technology. 1999;32(6):321-326.
  • [53] Pratt JT, Tamayo R, Tischler AD, Camilli A. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. The Journal of Biological Chemistry. 2007;282: 12860-12870.
  • [54] Qi Y, Rao F, Luo Z, Liang ZX. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in Ax DGC2 from Acetobacter xylinum. Biochemistry. 2009;48:10275-10285.
  • [55] Ray B, Bhunia A. Temel Gıda Mikrobiyolojisi. 5.baskı, 2016, Ankara, ss73-78.
  • [56] Read MA, Harrison R, Romagnoli B, Tanious FA, Gowan SM, Reszka A, Wilson WD, Kelland L, Neidle S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proceedings of the National Academy of Sciences. 2001;98:4844-4849.
  • [57] Read MA, Wood AA, Harrison JR, Gowan SM, Kelland LR. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: structure-activity relationships. Journal of Medicinal Chemistry. 1999;42:4538-4546.
  • [58] Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology. 2003;48:933-946.
  • [59] Romling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system, Molecular Microbiology. 2005;57:629-639.
  • [60] Romling U. Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Science Signaling, 2008;1(33):pe39.
  • [61] Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, Vroom E, Marel GA, Boom JH, Benziman M. High intracellular concentrations of c-di-GMP result in the expression of adhesive matrix components and biofilm formation. Nature. 1987;325:279-281.
  • [62] Salgar-Chaparro SJ, Lepkova K, Pojtanabuntoeng T, Darwin A, Machuca LL. Nutrient level determines biofilm characteristics and the subsequent impact on microbial corrosion and biocide effectiveness. Applied and Environmental Microbiology. 2020;86(7): e02885-19.
  • [63] Satpathy S, Sen SK, Pattanaik S, Raut S. Review on bacterial biofilm: An universal cause of contamination. Biocatalaysis and Agricultural Biotechnology. 2016;7:56–66.
  • [64] Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology. 2022;20:608–620.
  • [65] Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek. 2002;81:293–308.
  • [66] Schmidt A, Liu M. Chapter Four: Recent Advances in The Chemistry of Acridines. Advances in Heterocyclic Chemistry, Elsevier, London, USA, 2015, 287-353.
  • [67] Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Reviews Microbiology. 2009;7:724-735.
  • [68] Shibuya M, Takebe Y, Kaziro Y. A possible involvement of cya gene in the synthesis of cyclic guanosine 3′: 5′-monophosphate in E. coli. Cell. 1977;12:521–528.
  • [69] Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied Environmental Microbiology. 2001;67:2723-2733.
  • [70] Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. Journal of Dental Research. 2015;94(8):1027-1034.
  • [71] Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation, Molecular Microbiology. 2004;52(4):917-924.
  • [72] Stewart PS. A Model of biofilm detachment. Biotechonology and Bioengineering. 1993;41(1):111-117.
  • [73] Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T et al. The role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertusis. Microbiology. 2013;159:1379-1389.
  • [74] Takahashi K, Kasai K, Ochi K. Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proceedings of the National Academy of Sciences. 2004;101:4320-4324.
  • [75] Ulus R. Karbonik anhidraz inhibitörü olarak yeni akridin sülfanamit türevlerinin sentezi ve karakterizasyonları. Yüksek Lisans Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, 2012, Kütahya.
  • [76] Villanueva VD, Font J, Schwartz T, Romaní AM. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects, Biofouling. 2011;27(1):59-71.
  • [77] Waldrop R, McLare A, Calar F, McLemor R. Biofilm growth has a threshold response to glucose in vitro. Clinical Orthopaedics and Related Research. 2014;472(11):3305-3310.
  • [78] Wan X, Tuckerman JR, Saito JA, Freitas TA, Newhouse JS et al. Globins synthesize the second messenger bis-(3′–5′)-cyclic diguanosine monophosphate in bacteria. Journal of the American Chemical Society. 2009;388: 262-270.
  • [79] Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environmental Microbiology. 2005;7:1593–1601.
  • [80] Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. Journal of Food Sciences. 2010;75:M580-M585.
  • [81] Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus epidermidis and quinolones. Diagnostic Microbiology and Infectious Disease. 2001;40(3):79-89.
  • [82] Zhang Z, Kim S, Gaffney BL, Jones RA. Polymorphism of the signaling molecule c-di-GMP. Journal of the American Chemical Society. 2006;128:7015-7024.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı (Diğer)
Bölüm Derlemeler
Yazarlar

Kübra Yeşilkaya Bu kişi benim 0009-0001-2559-0815

Gökçe Merey 0000-0003-0759-1299

Proje Numarası TYL-2023-11089
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 10 Mayıs 2024
Kabul Tarihi 21 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 3

Kaynak Göster

APA Yeşilkaya, K., & Merey, G. (2024). Bakteriyel Biyofilm Oluşumunu Kontrol Eden Parametreler ve Moleküler Düzeyde Engelleyici Stratejiler. Journal of Health Sciences and Management, 4(3), 83-90.