BibTex RIS Cite

Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme.

Year 2015, Volume: 1 Issue: 2, 37 - 41, 20.06.2015

Abstract

Diabetes is a problem of public health that increases due to changes of life and eating habits. One of the most important complications of this disease is cardiomyopathy. Reasons that bring out diabetic cardiomyopathy include hyperglycemia, reaktive oksigen species (ROS), activation of DAG/PKC (diachyl glicerol/protein kinase C) pathway, upregulation of reninangiotensin-aldosteron system, fail of response to hypoxia , endothelial disfunction and otonomic neuropathy. This review aims to develop new treatment steps analyzing the pathophysiology of diabetic cardiomyopathy

References

  • http://www.who.int/diabetes/facts/world figures/en/ index4.html (11.03.2013).
  • Wild S, Roglic G, Green A, Sicree R, Harah K. Global prevalence of diabetes. Diabetes Care. 2004; 27: 1047–1053.
  • Satman I, Yilmaz T, Sengül A, Salman S, Salman F, Uygur S, Bastar I, Tütüncü Y, Sargin M, Dinççag N, Karsidag K, Kalaça S, Ozcan C, King H. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care. 2002; 25: 1551–1556.
  • Keskin Ö, Balcı B. Diabetes Mellitus ve Kardiyovasküler Komplikasyonlar. Kafkas J Med Sci. 2011; 1(2): 81-85.
  • American Diabetes Association. Standards of Medical Care in diabetes. Diabetes Care. 2012; 35: 11- 63.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012; 35: 64-71.
  • Sihem B, Dale AE. Diabetic cardiomyopathy revisited. Circulation. 2007; 115: 3213-3223.
  • Falcao-Pires I, Leite-Moreira AF, Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012; 17: 325-344.
  • Dries DL, Sweitzer NK, Drazner MH, Stevenson LW, Gersh BJ. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol. 2001; 38(2): 421-428.
  • Jennifer E, Palmieri V, Mary J, Jonanthan N, Fabsitz R, Barbara V, Thomas K, Elisa T, Richard B. The Impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: The strong heart study. Journal of the American College of Cardiology. 2001; 37: 1943-1949.
  • Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A. Impact of diabetes on long term prognosis in patients with unstable angina and non-Q wawe myocardial infarction. Results of the OASIS registry. Circulation. 2000; 102: 1014-1019.
  • Hayat SJ, Patel B, Khattar RJ, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clinical Science. 2004; 107, 539–557.
  • Wiggers, CJ. Studies on the duration of the consecutive phases of the cardiac cycle. 1 The duration of the consecutive phases of the cardiac cycle and criteria for their precise definition. Am. J. Physiol. 1921; 56: 415-438.
  • Zile MR, Baicu, CF, Gaasch, WH. Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 2004; 350: 1953-1959.
  • Singh R, Barden A, Mori T, Beilin L. Advanced glycation end products: a review. Diabetologia 2001; 44: 129-146.
  • Rosen P, Du X, Tschope D. Role of oxygen derived free radicals for vascular dysfunction in the diabetic heart: prevention by �-tocopherol? Mol. Cell Biochem. 1998; 188: 103–111.
  • Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP ribose) polymerase. Circ. Res. 2001; 89: 684–691.
  • Iribarren C, Karter AJ, Go AS. Glycaemic control and heart failure among adult patients with diabetes. Circulation. 2001; 103: 2668–2673.
  • Avendano GF, Agarwal RK, Bashey RI. Effects of glucose intolerance on myocardial function and collagen-linked glycation. Diabetes. 1999; 48: 1443–1447.
  • Devereux RB, Roman, MJ, Paranicas M. Impact of diabetes on cardiac structure and function: The Strong Heart Study. Circulation. 2000; 101(19): 2271-2276.
  • Young ME, Mcnulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in Diabetes: part II Potential mechanisms. Circulation. 2000; 105: 1861–1870.
  • Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc. Res. 1997; 34: 25–33.
  • Zhou Y, Grayburn P, Karim A. Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 1794–1789.
  • Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol. Cell. Biochem. 1998; 180: 53–57.
  • Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabet. Med.2001; 18: 945–959.
  • Kajstura J, Fiordaliso F, Andreoli AM. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes. 2001; 50: 1414–1424.
  • Leri A, Liu Y, Wang X. Overexpression of insulin like growth factor-1 attenuates the myocyte renin angiotensin system in transgenic mice. Circ. Res. 1999; 84: 752–762.
  • Fiordaliso F, Li B, Latini R. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest. 2000; 80: 513–527.
  • Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial �brosis. J. Lab. Clin. Med. 1992; 120: 893–901.
  • McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular �brosis in vivo. Circulation. 1998; 98: 2765–2773.
  • Young M, Head G, Funder JW. Determinants of cardiac �brosis in experimental hypermineralocorticoid states. Am. J. Physiol. 1995; 269: E657–E662.
  • Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002; 105(3): 373-379.
  • Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol 2006; 70: 1469–1480.
  • Yamakawa M, Liu LX, Date T. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 2003; 93: 664–673.
  • Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of Diabetes-related impairment of angiogenesis by intramuscular gene therapy with Adeno-VEGF. American Journal of Pathology. 1999; 154: 355-363.
  • Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impaired endothelium- dependent relaxation by activating protein kinase C. J. Clin. Invest. 1991; 87: 1643–1648.
  • Tooke JE. Microvascular function in human diabetes. Diabetes. 1995; 44: 721– 726.
  • Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high- glucose-induced over-expression of basement membrane components in cultured human endothelial cells. Diabetes. 1991; 40: 102–110.
  • Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJH, Fraser AG.Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003; 89: 449–45.
  • London GM, Guerin A. In�uence of arterial pulse and re�ected waves on blood pressure and cardiac function. Am. Heart J.1999; 138: 220–222.
  • Ohtsuka S, Kakihana M, Watanabe H. Alterations in left ventricular wall stress and coronary circulation in patients with isolated systolic hypertension. J. Hypertens. 1996; 14: 1349–1355.
  • Di Carli MF, Bianco-Batlles D, Landa M. Effects of autonomic neuropathy on coronary blood �ow in patients with diabetes mellitus. Circulation 1999; 100: 813–819.
  • Kahn K, Zola B, Juni JE, Vinik AI. Radionuclide assessment of LV diastolic �lling pressures in diabetes mellitus with and without cardiac autonomic neuropathy. J. Am. Coll. Cardiol. 1986; 7: 1303–1309.
  • Airaksinen K, Kostinen J, Akaheimo M, Huikuri H. Augmentation of atrial contraction to LV �lling in IDDM subjects as assessed by Doppler echocardiograph. Diabetes Care 1989; 12: 159–161. 45. Mustonen J, Mantysaari M, Kuikka J. Decreased myocardial 123I-metaiodobenzylguanidine uptake is associated with disturbed LV diastolic �lling in diabetes. Am. Heart J. 1992; 123: 804–805.
  • Annonu AK, Fattah AA, Mokhtar MS, Ghareeb S, Elhendy A. LV systolic and diastolic functional abnormalities in asymptomatic patients with non-insulin- dependent diabetes mellitus. J. Am. Soc. Echocardiogr.2001; 14: 885–889.
  • Uusitupa M, Mustonen J, Laakso M. Impairment of diastolic function in middle aged type 1 and type 2 diabetic patients free of cardiovascular disease. Diabetologia 1988; 31: 783–791.
  • Monteagudo PT, Moises VA, Kohlmann JO, Ribeiro AB, Lima VC, Zanella MT. In�uence of autonomic neuropathy upon LV dysfunction in insulin-dependent diabetic patients. Clin. Cardiol.2000; 23: 371–375.

Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme

Year 2015, Volume: 1 Issue: 2, 37 - 41, 20.06.2015

Abstract

Diyabet sedanter yaşam ve beslenme alışkanlıklarının değişimi sonucu insidansı artan bir toplum sağlığı problemdir. Bu hastalığın en önemli komplikasyonlarından biri diyabetik kardiyomyopatidir. Diyabetik kardiyomyopatinin meydana gelmesinde hiperglisemi, reaktif oksijen türevleri (ROS), DAG/PKC (diaçil gliserol/protein kinaz C) sinyal yolağının aktivasyonu, renin-anjiyotensin-aldosteron sisteminin upregülasyonu, hipoksiye yanıtın bozulması, endotel disfonksiyonu ve otonomik nöropati gibi birçok sebep yer almaktadır. Bu derleme ile diyabetik kardiyomyopatinin patoŞ zyolojisine ışık tutarak yeni tedavi basamakları geliştirilebilmesi amaçlanmaktadır

References

  • http://www.who.int/diabetes/facts/world figures/en/ index4.html (11.03.2013).
  • Wild S, Roglic G, Green A, Sicree R, Harah K. Global prevalence of diabetes. Diabetes Care. 2004; 27: 1047–1053.
  • Satman I, Yilmaz T, Sengül A, Salman S, Salman F, Uygur S, Bastar I, Tütüncü Y, Sargin M, Dinççag N, Karsidag K, Kalaça S, Ozcan C, King H. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care. 2002; 25: 1551–1556.
  • Keskin Ö, Balcı B. Diabetes Mellitus ve Kardiyovasküler Komplikasyonlar. Kafkas J Med Sci. 2011; 1(2): 81-85.
  • American Diabetes Association. Standards of Medical Care in diabetes. Diabetes Care. 2012; 35: 11- 63.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012; 35: 64-71.
  • Sihem B, Dale AE. Diabetic cardiomyopathy revisited. Circulation. 2007; 115: 3213-3223.
  • Falcao-Pires I, Leite-Moreira AF, Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012; 17: 325-344.
  • Dries DL, Sweitzer NK, Drazner MH, Stevenson LW, Gersh BJ. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol. 2001; 38(2): 421-428.
  • Jennifer E, Palmieri V, Mary J, Jonanthan N, Fabsitz R, Barbara V, Thomas K, Elisa T, Richard B. The Impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: The strong heart study. Journal of the American College of Cardiology. 2001; 37: 1943-1949.
  • Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A. Impact of diabetes on long term prognosis in patients with unstable angina and non-Q wawe myocardial infarction. Results of the OASIS registry. Circulation. 2000; 102: 1014-1019.
  • Hayat SJ, Patel B, Khattar RJ, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clinical Science. 2004; 107, 539–557.
  • Wiggers, CJ. Studies on the duration of the consecutive phases of the cardiac cycle. 1 The duration of the consecutive phases of the cardiac cycle and criteria for their precise definition. Am. J. Physiol. 1921; 56: 415-438.
  • Zile MR, Baicu, CF, Gaasch, WH. Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 2004; 350: 1953-1959.
  • Singh R, Barden A, Mori T, Beilin L. Advanced glycation end products: a review. Diabetologia 2001; 44: 129-146.
  • Rosen P, Du X, Tschope D. Role of oxygen derived free radicals for vascular dysfunction in the diabetic heart: prevention by �-tocopherol? Mol. Cell Biochem. 1998; 188: 103–111.
  • Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP ribose) polymerase. Circ. Res. 2001; 89: 684–691.
  • Iribarren C, Karter AJ, Go AS. Glycaemic control and heart failure among adult patients with diabetes. Circulation. 2001; 103: 2668–2673.
  • Avendano GF, Agarwal RK, Bashey RI. Effects of glucose intolerance on myocardial function and collagen-linked glycation. Diabetes. 1999; 48: 1443–1447.
  • Devereux RB, Roman, MJ, Paranicas M. Impact of diabetes on cardiac structure and function: The Strong Heart Study. Circulation. 2000; 101(19): 2271-2276.
  • Young ME, Mcnulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in Diabetes: part II Potential mechanisms. Circulation. 2000; 105: 1861–1870.
  • Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc. Res. 1997; 34: 25–33.
  • Zhou Y, Grayburn P, Karim A. Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 1794–1789.
  • Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol. Cell. Biochem. 1998; 180: 53–57.
  • Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabet. Med.2001; 18: 945–959.
  • Kajstura J, Fiordaliso F, Andreoli AM. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes. 2001; 50: 1414–1424.
  • Leri A, Liu Y, Wang X. Overexpression of insulin like growth factor-1 attenuates the myocyte renin angiotensin system in transgenic mice. Circ. Res. 1999; 84: 752–762.
  • Fiordaliso F, Li B, Latini R. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest. 2000; 80: 513–527.
  • Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial �brosis. J. Lab. Clin. Med. 1992; 120: 893–901.
  • McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular �brosis in vivo. Circulation. 1998; 98: 2765–2773.
  • Young M, Head G, Funder JW. Determinants of cardiac �brosis in experimental hypermineralocorticoid states. Am. J. Physiol. 1995; 269: E657–E662.
  • Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002; 105(3): 373-379.
  • Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol 2006; 70: 1469–1480.
  • Yamakawa M, Liu LX, Date T. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 2003; 93: 664–673.
  • Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of Diabetes-related impairment of angiogenesis by intramuscular gene therapy with Adeno-VEGF. American Journal of Pathology. 1999; 154: 355-363.
  • Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impaired endothelium- dependent relaxation by activating protein kinase C. J. Clin. Invest. 1991; 87: 1643–1648.
  • Tooke JE. Microvascular function in human diabetes. Diabetes. 1995; 44: 721– 726.
  • Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high- glucose-induced over-expression of basement membrane components in cultured human endothelial cells. Diabetes. 1991; 40: 102–110.
  • Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJH, Fraser AG.Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003; 89: 449–45.
  • London GM, Guerin A. In�uence of arterial pulse and re�ected waves on blood pressure and cardiac function. Am. Heart J.1999; 138: 220–222.
  • Ohtsuka S, Kakihana M, Watanabe H. Alterations in left ventricular wall stress and coronary circulation in patients with isolated systolic hypertension. J. Hypertens. 1996; 14: 1349–1355.
  • Di Carli MF, Bianco-Batlles D, Landa M. Effects of autonomic neuropathy on coronary blood �ow in patients with diabetes mellitus. Circulation 1999; 100: 813–819.
  • Kahn K, Zola B, Juni JE, Vinik AI. Radionuclide assessment of LV diastolic �lling pressures in diabetes mellitus with and without cardiac autonomic neuropathy. J. Am. Coll. Cardiol. 1986; 7: 1303–1309.
  • Airaksinen K, Kostinen J, Akaheimo M, Huikuri H. Augmentation of atrial contraction to LV �lling in IDDM subjects as assessed by Doppler echocardiograph. Diabetes Care 1989; 12: 159–161. 45. Mustonen J, Mantysaari M, Kuikka J. Decreased myocardial 123I-metaiodobenzylguanidine uptake is associated with disturbed LV diastolic �lling in diabetes. Am. Heart J. 1992; 123: 804–805.
  • Annonu AK, Fattah AA, Mokhtar MS, Ghareeb S, Elhendy A. LV systolic and diastolic functional abnormalities in asymptomatic patients with non-insulin- dependent diabetes mellitus. J. Am. Soc. Echocardiogr.2001; 14: 885–889.
  • Uusitupa M, Mustonen J, Laakso M. Impairment of diastolic function in middle aged type 1 and type 2 diabetic patients free of cardiovascular disease. Diabetologia 1988; 31: 783–791.
  • Monteagudo PT, Moises VA, Kohlmann JO, Ribeiro AB, Lima VC, Zanella MT. In�uence of autonomic neuropathy upon LV dysfunction in insulin-dependent diabetic patients. Clin. Cardiol.2000; 23: 371–375.
There are 47 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Derya Güzel This is me

Publication Date June 20, 2015
Submission Date June 20, 2015
Published in Issue Year 2015 Volume: 1 Issue: 2

Cite

APA Güzel, D. (2015). Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme. Journal of Human Rhythm, 1(2), 37-41.
AMA Güzel D. Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme. Journal of Human Rhythm. June 2015;1(2):37-41.
Chicago Güzel, Derya. “Diyabetik Kardiyomiyopati Ve Moleküler Temeli: Derleme”. Journal of Human Rhythm 1, no. 2 (June 2015): 37-41.
EndNote Güzel D (June 1, 2015) Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme. Journal of Human Rhythm 1 2 37–41.
IEEE D. Güzel, “Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme”, Journal of Human Rhythm, vol. 1, no. 2, pp. 37–41, 2015.
ISNAD Güzel, Derya. “Diyabetik Kardiyomiyopati Ve Moleküler Temeli: Derleme”. Journal of Human Rhythm 1/2 (June 2015), 37-41.
JAMA Güzel D. Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme. Journal of Human Rhythm. 2015;1:37–41.
MLA Güzel, Derya. “Diyabetik Kardiyomiyopati Ve Moleküler Temeli: Derleme”. Journal of Human Rhythm, vol. 1, no. 2, 2015, pp. 37-41.
Vancouver Güzel D. Diyabetik Kardiyomiyopati ve Moleküler Temeli: Derleme. Journal of Human Rhythm. 2015;1(2):37-41.