Research Article
BibTex RIS Cite
Year 2017, Volume: 3 Issue: 3, 126 - 136, 28.09.2017

Abstract

References

  • KAYNAKLAR 1- Kim D,Zeng MY et al. The interplay between host immune cells and gut micorbiota in chronic inflammatory diseases. Experimental and molecular medicine 2017;49.
  • 2- Konturek P C,Hazırı D ,Brzozowskı T et al. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extragastrointestinal diseases. Journal of physiology and pharmacology 2015,66,4,483-491.
  • 3- EckburgPB, et al. Diversity of the human intestinal micorbial flora. Science 2005;308:1635-38.
  • 4- Frank DN et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatroy bowel diseases. Proc Natl Acad Sci. USA. 2007;104:13780-85.
  • 5- Stout MJ et al. Identification of intracelluler bacterial in the basal plate of human placenta in term and preterm gestations. Am J Obstet. Gynecol. 2013;208-226.
  • 6- Jimenez E et al. Is meconium from healty newborns actual sterile? Res microbiol 2008;159:187-9.
  • 7- Gueimonde M, Sakata S,et al. Effect of maternal consumption of lactobacillus GG on transfer and establishment of fecal bifidobacterial microbiota in neonates. J Pediatr Gastroenterol Nutr 2006; 42:166–70.
  • 8- Vaishampayan PA, Kuehl JV, et al.Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2010; 2:53–66.
  • 9- Penders J, Thijs C, Vink C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118:511–21.
  • 10- Dominguez-Bello MG, Costello EK, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971–5.
  • 11- Nelun Barfod M, Magnusson K,et al. Oral microflora in infants delivered vaginally and by caesarean section. Int J Paediatr Dent 2011; 21:401–6.
  • 12- Kinross J, Nicholson JK. Gut microbiota: dietary and social modulation of gut microbiota in the elderly. Nat Rev Gastroenterol Hepatol 2012; 9:563–4.
  • 13- Claesson MJ, Cusack S, O’Sullivan O et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011; 108 (Suppl. 1):4586–91.
  • 14- Toward R, Montandon S, Walton G, Gibson GR. Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 2012; 3:57–60.
  • 15- CT Peterson,V Sharma et al. Immune homeostasis,dysbiosis and therapotic modulation of gut microbiata. Clinical Exp Immunology 2014; 363-77.
  • 16- Altuntaş Y,Batman A. Mikrobiata ve metabolik sendrom.Türk Kardiyoloji Derneği Ars 2017;45(3): 286-96.
  • 17- Al-lahhamSH, Peppelenbosch MP et al. Biological effects of propionic acid in humans;metabolism potential applications and underlying mechanisms.Biochim Biophys Acta 2010;1801:1175-83
  • 18- Heerdt BG et al. Short chain fatty acid initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 1997;8:523-532
  • 19- Bercik P collins Sm et al. Microbes and the gut-brain axis. Neurogastroenterol Motil 2012;24:405-13.
  • 20- Konturek PC et al. Stress and the gut:pathophysiology clinical consequences,diagnostic approach and treatment options.Jphysiol Pharmacol 2011;62:591-99.
  • 21- Szabo G. Gut liver axis in alcoholic liver disease.Gastroenterology 2015;148:30-36
  • 22- Czepiel J, Biesiada G, Brzozowski T, et al. The role of local and systemic cytokines in patients infected with Clostridium difficile. J Physiol Pharmacol 2014; 65: 695-703.
  • 23- Bouza E. Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect 2012; 18 (Suppl. 6): 5-12.
  • 24- Tacke D, Wisplinghoff H, Kretzschmar A, et al. First implementation of frozen, capsulized faecal microbiota transplantation for recurrent Clostridium difficile infection into clinical practice in Europe. Clin Microbiol Infect 2015; Jul 7: S1198-743X(15)00689-8.
  • 25- Eiseman B, Silen W, Bascom CS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958; 44: 854-859.
  • 26- Van Nood E et al .Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–415.
  • 27- Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109: 1065-1071.
  • 28- Çelebi G, Uygun A. İntestinal mikrobata ve fekal transplantasyon. Güncel Gastroenteroloji 2017 ;2:148-157.
  • 29- Matsuoka K,Kanai T. The gut mikrobiota and inflammatory bowel disease. Semin İmmunopathol. 2015;37:47-55.
  • 30- Takaishi H et al (2008) Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 298:463–472.
  • 31- Pitcher MC et al .The contribution of sulphate reducing bac- teria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000; 46:64–72.
  • 32- Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 2014; 8: 1569-1581.
  • 33- Gevers D et al The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15:382–392.
  • 34- Dylag K, Hubalewska-Mazgaj M,et al. Probiotics in the mechanism of protection against gut inflammation and therapy of gastrointestinal disorders. Curr Pharm Des 2014; 20: 1149-1155.
  • 35- Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 2014; 146: 1554-1563.
  • 36- Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2013; 305: G529-G541.
  • 37- Festi D,Schiumerini R et al. Gut microbiota and metabolic syndrome.World Journal of Gastroenterology 2014:21;20(43):16079-94.
  • 38- Harststra AV,Bouter K. Et al .Insights in to The Role of The Microbioma in Obesity and Type 2 Diabetes .Diabetes Care 2015;38:159-165.
  • 39- Sanacruz A,Collado MC et al. Gut microbiota composition is associated with body weight gain and bipochemical parameters in pregnant women. Br J Nutr 2010;104:83-92.
  • 40- Penders J, Thijs C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-21.
  • 41- Turnbaugh PJ,Backhed F et al . Diet induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.Cell Host Microbe 2008;3:213-223.
  • 42- Hildebrandt MA,Hoffmann C et al. High fat diet determines the composition of the murine gut micorbiome independently of obesity. Gastroenterology 2009;137:1716-24.
  • 43- De Filippo C, Cavalieri D et al. Impact of diet in shaping gut micorbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691-96.
  • 44- Brinkworth GD,Noakes M et al Comparative effects of very low charbonhydrate ,high fat and high carbonhydrate,low fat weight loss diets on bowel habit and faecal short chain fatty acids and bacterial populations. Br J Nutr. 2009;101:1493-1502.
  • 45- Cani PD,amar J et al .Metabolic endotoxemia initiates obesity and insülin resistance. Diabetes 2007;56:1761-1772
  • 46- Lam YY,Ha CW et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfonction in diet induced obese mice. PLoS One 2012;7:e34233
  • 47- Liou AP, Paziuk M, Luevano J-M,et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5:178ra41
  • 48- Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with meta- bolic and low-grade inflammation markers. Diabetes 2010;59:3049–3057.
  • 49- Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric by- pass. Proc Natl Acad Sci U S A 2009;106:2365– 2370.
  • 50- Fei N,Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ free mice. ISME J 2013;7:880-84.
  • 51- Backhed F,Ding H et al. The gut microbiata as an environmental factor that regülates fat storage. Proc Natl Acad Sci USA 2004;101:15718-23.
  • 52- Le Chatelier E,Nielsen T,Qin J et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-46.
  • 53- Kalliomaki M,Collado MC et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87:534-38.
  • 54- Karlsson CL, Onnerfalt J et al.The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (silver Spring) 2012;20:2257-2261.
  • 55- Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with nor- mal, impaired and diabetic glucose control. Na- ture 2013;498:99–103.
  • 56- Qin J, Li Y, Cai Z, et al. A metagenome wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60.
  • 57- Zhang X,Shen D,Fang Z et al. Human gut microbiota changesreveal te progression of glucose intolerance. Plos One 2013;8:e71108.
  • 58- Wu X,Ma C et al.molecular characterisationfo the faecalmicrobiota in patients with type 2 diabetes. Curr Microbiol 2010;61:69-78.
  • 59- Vrieze A,Van Nood E et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity iin indivituals with metabolic syndrome.Gastroenterology 2012;143:913-16.
  • 60- Membrez M,Blancher F et al gut microbiota modulation with norfloksaxin and ampicillin enhances glucose tolerance in mice. FASEB J 2008;22:2416-26.
  • 61- Amar J,Serino M et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept.Diabetologia 2011;54:3055-61.
  • 62- Creely SJ,McTernan PG et al.Lipopolisaccaride activates an innate immune system response in human adipose tissuein obesity and type 2 diabetes. Am JPhysiol Endocrinol Metab 2007;292:E740-47.
  • 63- Rivera CA, Adegboyega P,Van Rooijen N et al.Toll like receptor 4 signaling and Kuppfer cellsplay pivotal roles inthe pathogenesis of non-alcoholic steatohepatitis.J Hepatology 2007;47:571-79.
  • 64- Karlsson FH, Tremaroli V et al.Gut metagenomein eutropean womenwith normal,impaired and diabetic glucose control.Nature 2013;498:99-103.
  • 65- Spruss A,Kanuri G et alToll like receptor 4 is involved in the develpment of fructose –induced hepatic steatosis in mice. Hepatology 2009;50:1094-1104.
  • 66- Miele L,Valenza V et al increased intestinal permeability and tight junction alterations in nonlcoholic fatty liver disease. Hepatology 2009;49:1877-87.
  • 67- Mouzaki M,Comelli EM et al intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013;58:120-7.
  • 68- Zhu L,Baker SS et al.Characterisation of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients:a connection between endogenous alcohol and NASH. Hepatology 2013;57:601-9.
  • 69- Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299: 1259–1260
  • 70- Ownby DR, Johnson C, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 2002; 288: 963–972.
  • 71- Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358: 1129–1133.
  • 72- Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2012; 2: 94
  • 73- Abrahamsson TR, Jakobsson HE, et al.Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44: 842–850
  • 74- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107: 11971–11975.
  • 75- Renz-Polster H, David MR, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy 2005; 35: 1466–1472.
  • 76- Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance suscept- ibility to allergic asthma. EMBO Rep 2012; 13: 440–447.
  • 77- Stensballe LG, Simonsen J,et al. Use of antibiotics during pregnancy increases the risk of asthma in early child- hood. J Pediatr 2013; 162: 832–838.e833.
  • 78- Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159–166.
  • 79- Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 2016; 8: 43.
  • 80- Zhang X, Zhang D, Jia H. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015; 21: 895–905.
  • 81- Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013; 2: e01202.
  • 82- Gill T,Asquitf M et al. The intestinal microbiome in spondyloarthritis. Curr Opin Rheumatol.2015 July;27(4):319-25.
  • 83- Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate induced colitis. Inflamm Bowel Dis. 2011; 17:917–926.
  • 84- Ebringer R, Cooke D, Cawdell DR et al. Ankylosing spondylitis: klebsiella and HL-A B27. Rheumatol Rehabil. 1977; 16:190–196.
  • 85- Tani Y, Tiwana H, Hukuda S et al. A. Antibodies to Klebsiella, Proteus, and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J Rheumatol. 1997; 24:109–114.
  • 86- Stoll ML, Kumar R, et al.Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014; 16:486.
  • 87- Stebbings S, Munro K, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002; 41:1395–1401.
  • 88- Willing BP, Dicksved J et al.A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010; 139:1844– 1854. e1841.
  • 89- de Silva HJ, Millard PR, Soper N, Kettlewell M, Mortensen N, Jewell DP. Effects of the faecal stream and stasis on the ileal pouch mucosa. Gut 1991; 32: 1166-1169
  • 90- Mangiola F,Ianiro G, et al. Gut microbiota in autizm and mood disorders.World Gastroenterol 2016; J 7;22(1):361-68.
  • 91- Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric Nat Rev Gastroenterol Hepatol microbiota axis. 2009; 6: 306-314.
  • 92- Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701-712.
  • 93- O’Mahony SM, Marchesi JR,et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65: 263-267 [PMID: 1872316
  • 94- Finegold SM, Molitoris D, Song Yet al.Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002; 35: S6-S16 .
  • 95- Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004; 70: 6459-6465.
  • 96- Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005; 54: 987-991 [PMID: 16157555
  • 97- Bolte ER. Autism and Clostridium tetani. Med Hypotheses 1998; 51: 133-144.
  • 98- Sandler RH, Finegold SM, et al.Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15: 429-435
  • 99- Emanuele E, Orsi P,et al. Low-grade endotoxemia in patients with severe autism. Neurosci Lett 2010; 471: 162-165.
  • 100- Evrensel A,Ceylan ME. Fecal microbiata transplantation and its usage in neurophysiatric disorders. Clinical phychopharmacology and neuroscience 2016;14(3):231-37.
  • 101- Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 2013;29:79-84
  • 102- Gondalia SV,Palombo EA ,Knowles SR et al. Molecular characterization of gastrointestinal microbiota of children with autism (with or without gastrointestinal dysfunction) and their nörotypical siblings.Autism Res 2012;5:419427.
  • 103- Schab DW, Trinh NH. Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. J Dev Behav Pediatr. 2004; 25(6):423–434.
  • 104- Jiang H, Ling Z, Zhang Y et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-194. 105- Khanna S, Pardi DS. The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Rev Gastroenterol Hepatol 2010; 4: 409-416.
  • 106- Ait-Belgnaoui A, Durand H, Cartier C,et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats.Physchoneuroendocrinology 2012:37:1885-95.
  • 107- Desbonnet L, Clarke G,et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015; 48: 165-173. 108- Soczynska JK, Mansur RB, et al.Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012; 235: 302-317.
  • 109- Miyaoka T, Wake R, Furuya M,et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37: 222-226.
  • 110- Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psychiatry. 2012; 51(1):86–97.
  • 111- Grigoleit JS, Kullmann JS, Wolf OT,et al. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 2011; 6: e28330 .
  • 112- Naseribafrouei A, Hestad K, Avershina E, et al.Between the human fecal microbiota and depression. Neurogastroenterol Motil 2014; 26: 1155-1162.
  • 113- Jiang H,Ling Z,Zhang Y et al.altered fecal microbiata composition in patients with major depressive disorder.Brain Behav Immun 2015;48:186-194.
  • 114- Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23: 255-264.
  • 115- Clarke G, Grenham S, Scully P, et al.The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18: 666-673.
  • 116- Logan AC, Katzman M. Major depressive disorder: probiotics maybe an adjuvant therapy. Med Hypotheses 2005; 64: 533-538.
  • 117- Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011; 479(7374):538–541.
  • 118- Theoharides TC, Enakuaa S, Sismanopoulos N, et al. Contribution of stress to asthma worsening through mast cell activation. Ann Allergy Asthma Immunol. 2012; 109(1):14–19.
  • 119- Chandler N, Jacobson S, Connolly R, Esposito P, Theoharides TC. Acute stress shortens the time of onset of experimental allergic encephalomyelitis (EAE) in SJL/J mice. Brain Behav Immun. 2002; 16:757–763.
  • 120- Tache Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol. 2001; 280(2):G173–G177.
  • 121- Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. Front Psychiatry. 2015; 6:5.
  • 122- Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008; 84(4):940–948.
  • 123- Mulak A,Bonaz B et al;Brain-gut microbiata axis in Parkinson’s Disease. World J Gastroenterol. 2015 oct 7;21(37):10609-620.
  • 124- Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, et al. Fecal microbiota transplantation broadening its applica- tion beyond intestinal disorders. World J Gastroenterol 2015;21:102-111.
  • 125- Vizcarra JA, Wilson-Perez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson’s disease. Mov Disord 2015; 30: 296-298.
  • 126- Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 2014; 62: 197-202.
  • 127- Ananthaswamy A. Faecal transplant eases symptoms of Parkinson’s disease. New Sci 2011;209:8-9.
  • 128- Scheperjans F, Aho V, Pereira PA, et al.Gut microbiota are related to Parkinson’ s disease and clinical phenotype. Mov Disord 2015; 30: 350-358.
  • 129- Hill J M,Bhattacharjee S et al . The Gastrointestinal tract microbiome and potential link to Alzheimer’s Disease.Frontiers in Neurology 2014 .4;5:43.
  • 130- Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and impli- cations for health and disease. Gastroenterology (2014). doi:10.1053/j.gastro.2014.01.058
  • 131- Schwartz K, Boles BR. Microbial amyloids-functions and interactions within the host. Curr Opin Microbiol (2013) 16:93–9
  • 132- Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis (2014) 39:169–79.
  • 133- Li J,Lee DS et al Evolving bacterial envelopes and plasticity of TLR-2-dependent responses: Basic research and translational opportunities. Front Immunol 4,347. 134- Smith MA, Perry G et al Oxidative damage in Alzheimer’s. Nature 382,120-121.

Mikrobiata ve Kronik Hastalıklar

Year 2017, Volume: 3 Issue: 3, 126 - 136, 28.09.2017

Abstract

Vücudumuzda
mikrobiata adı verilen çok sayıda kommensal ve mutual mikroorganizma mevcuttur.
Kendi mikrobial florası olan başlıca sistemler gastrointestinal sistem, genitoüriner
sistem ve solunum sistemi ve deridir. Özellikle barsak mikrobiata denilen
gastrointestinal sistem florasının, son zamanlarda bir çok fizyolojik ve
patolojik süreçte önemi fark edilmiştir.

Barsak
mikrobatası ile ilgili ilk çalışmalar rekürren C. Difficile enfeksiyonunun
tedavisi için planlanmıştır. Barsak mikrobiota modulasyonu ile rekürren C.
Difficile enfeksiyonunun tedavisinde sağlanan büyük başarı ile birlikte barsak
mikrobatası birçok gastrointestinal ve extragastrointestinal kronik hastalıkta
çalışılmış ve önemi anlaşılmıştır.Bu yüzden şu anda barsak mikrobata
modulasyonu ve değişimi ile bir çok hastalık tedavi edilmeye çalışılmaktadır.





İntestinal
mikrobiota gelecekte birçok kronik hastalığın tedavisinde büyük umut vaad etmektedir.
Ancak daha kapsamlı çalışmalara ciddiyetle ihtiyaç vardır. Biz bu derlemede
çeşitli kronik hastalıklar ile intestinal mikrobiata arasındaki ilişkiyi inceledik.

References

  • KAYNAKLAR 1- Kim D,Zeng MY et al. The interplay between host immune cells and gut micorbiota in chronic inflammatory diseases. Experimental and molecular medicine 2017;49.
  • 2- Konturek P C,Hazırı D ,Brzozowskı T et al. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extragastrointestinal diseases. Journal of physiology and pharmacology 2015,66,4,483-491.
  • 3- EckburgPB, et al. Diversity of the human intestinal micorbial flora. Science 2005;308:1635-38.
  • 4- Frank DN et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatroy bowel diseases. Proc Natl Acad Sci. USA. 2007;104:13780-85.
  • 5- Stout MJ et al. Identification of intracelluler bacterial in the basal plate of human placenta in term and preterm gestations. Am J Obstet. Gynecol. 2013;208-226.
  • 6- Jimenez E et al. Is meconium from healty newborns actual sterile? Res microbiol 2008;159:187-9.
  • 7- Gueimonde M, Sakata S,et al. Effect of maternal consumption of lactobacillus GG on transfer and establishment of fecal bifidobacterial microbiota in neonates. J Pediatr Gastroenterol Nutr 2006; 42:166–70.
  • 8- Vaishampayan PA, Kuehl JV, et al.Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2010; 2:53–66.
  • 9- Penders J, Thijs C, Vink C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118:511–21.
  • 10- Dominguez-Bello MG, Costello EK, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971–5.
  • 11- Nelun Barfod M, Magnusson K,et al. Oral microflora in infants delivered vaginally and by caesarean section. Int J Paediatr Dent 2011; 21:401–6.
  • 12- Kinross J, Nicholson JK. Gut microbiota: dietary and social modulation of gut microbiota in the elderly. Nat Rev Gastroenterol Hepatol 2012; 9:563–4.
  • 13- Claesson MJ, Cusack S, O’Sullivan O et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011; 108 (Suppl. 1):4586–91.
  • 14- Toward R, Montandon S, Walton G, Gibson GR. Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 2012; 3:57–60.
  • 15- CT Peterson,V Sharma et al. Immune homeostasis,dysbiosis and therapotic modulation of gut microbiata. Clinical Exp Immunology 2014; 363-77.
  • 16- Altuntaş Y,Batman A. Mikrobiata ve metabolik sendrom.Türk Kardiyoloji Derneği Ars 2017;45(3): 286-96.
  • 17- Al-lahhamSH, Peppelenbosch MP et al. Biological effects of propionic acid in humans;metabolism potential applications and underlying mechanisms.Biochim Biophys Acta 2010;1801:1175-83
  • 18- Heerdt BG et al. Short chain fatty acid initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 1997;8:523-532
  • 19- Bercik P collins Sm et al. Microbes and the gut-brain axis. Neurogastroenterol Motil 2012;24:405-13.
  • 20- Konturek PC et al. Stress and the gut:pathophysiology clinical consequences,diagnostic approach and treatment options.Jphysiol Pharmacol 2011;62:591-99.
  • 21- Szabo G. Gut liver axis in alcoholic liver disease.Gastroenterology 2015;148:30-36
  • 22- Czepiel J, Biesiada G, Brzozowski T, et al. The role of local and systemic cytokines in patients infected with Clostridium difficile. J Physiol Pharmacol 2014; 65: 695-703.
  • 23- Bouza E. Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect 2012; 18 (Suppl. 6): 5-12.
  • 24- Tacke D, Wisplinghoff H, Kretzschmar A, et al. First implementation of frozen, capsulized faecal microbiota transplantation for recurrent Clostridium difficile infection into clinical practice in Europe. Clin Microbiol Infect 2015; Jul 7: S1198-743X(15)00689-8.
  • 25- Eiseman B, Silen W, Bascom CS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958; 44: 854-859.
  • 26- Van Nood E et al .Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–415.
  • 27- Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109: 1065-1071.
  • 28- Çelebi G, Uygun A. İntestinal mikrobata ve fekal transplantasyon. Güncel Gastroenteroloji 2017 ;2:148-157.
  • 29- Matsuoka K,Kanai T. The gut mikrobiota and inflammatory bowel disease. Semin İmmunopathol. 2015;37:47-55.
  • 30- Takaishi H et al (2008) Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 298:463–472.
  • 31- Pitcher MC et al .The contribution of sulphate reducing bac- teria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000; 46:64–72.
  • 32- Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 2014; 8: 1569-1581.
  • 33- Gevers D et al The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15:382–392.
  • 34- Dylag K, Hubalewska-Mazgaj M,et al. Probiotics in the mechanism of protection against gut inflammation and therapy of gastrointestinal disorders. Curr Pharm Des 2014; 20: 1149-1155.
  • 35- Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 2014; 146: 1554-1563.
  • 36- Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2013; 305: G529-G541.
  • 37- Festi D,Schiumerini R et al. Gut microbiota and metabolic syndrome.World Journal of Gastroenterology 2014:21;20(43):16079-94.
  • 38- Harststra AV,Bouter K. Et al .Insights in to The Role of The Microbioma in Obesity and Type 2 Diabetes .Diabetes Care 2015;38:159-165.
  • 39- Sanacruz A,Collado MC et al. Gut microbiota composition is associated with body weight gain and bipochemical parameters in pregnant women. Br J Nutr 2010;104:83-92.
  • 40- Penders J, Thijs C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-21.
  • 41- Turnbaugh PJ,Backhed F et al . Diet induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.Cell Host Microbe 2008;3:213-223.
  • 42- Hildebrandt MA,Hoffmann C et al. High fat diet determines the composition of the murine gut micorbiome independently of obesity. Gastroenterology 2009;137:1716-24.
  • 43- De Filippo C, Cavalieri D et al. Impact of diet in shaping gut micorbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691-96.
  • 44- Brinkworth GD,Noakes M et al Comparative effects of very low charbonhydrate ,high fat and high carbonhydrate,low fat weight loss diets on bowel habit and faecal short chain fatty acids and bacterial populations. Br J Nutr. 2009;101:1493-1502.
  • 45- Cani PD,amar J et al .Metabolic endotoxemia initiates obesity and insülin resistance. Diabetes 2007;56:1761-1772
  • 46- Lam YY,Ha CW et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfonction in diet induced obese mice. PLoS One 2012;7:e34233
  • 47- Liou AP, Paziuk M, Luevano J-M,et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5:178ra41
  • 48- Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with meta- bolic and low-grade inflammation markers. Diabetes 2010;59:3049–3057.
  • 49- Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric by- pass. Proc Natl Acad Sci U S A 2009;106:2365– 2370.
  • 50- Fei N,Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ free mice. ISME J 2013;7:880-84.
  • 51- Backhed F,Ding H et al. The gut microbiata as an environmental factor that regülates fat storage. Proc Natl Acad Sci USA 2004;101:15718-23.
  • 52- Le Chatelier E,Nielsen T,Qin J et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-46.
  • 53- Kalliomaki M,Collado MC et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87:534-38.
  • 54- Karlsson CL, Onnerfalt J et al.The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (silver Spring) 2012;20:2257-2261.
  • 55- Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with nor- mal, impaired and diabetic glucose control. Na- ture 2013;498:99–103.
  • 56- Qin J, Li Y, Cai Z, et al. A metagenome wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60.
  • 57- Zhang X,Shen D,Fang Z et al. Human gut microbiota changesreveal te progression of glucose intolerance. Plos One 2013;8:e71108.
  • 58- Wu X,Ma C et al.molecular characterisationfo the faecalmicrobiota in patients with type 2 diabetes. Curr Microbiol 2010;61:69-78.
  • 59- Vrieze A,Van Nood E et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity iin indivituals with metabolic syndrome.Gastroenterology 2012;143:913-16.
  • 60- Membrez M,Blancher F et al gut microbiota modulation with norfloksaxin and ampicillin enhances glucose tolerance in mice. FASEB J 2008;22:2416-26.
  • 61- Amar J,Serino M et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept.Diabetologia 2011;54:3055-61.
  • 62- Creely SJ,McTernan PG et al.Lipopolisaccaride activates an innate immune system response in human adipose tissuein obesity and type 2 diabetes. Am JPhysiol Endocrinol Metab 2007;292:E740-47.
  • 63- Rivera CA, Adegboyega P,Van Rooijen N et al.Toll like receptor 4 signaling and Kuppfer cellsplay pivotal roles inthe pathogenesis of non-alcoholic steatohepatitis.J Hepatology 2007;47:571-79.
  • 64- Karlsson FH, Tremaroli V et al.Gut metagenomein eutropean womenwith normal,impaired and diabetic glucose control.Nature 2013;498:99-103.
  • 65- Spruss A,Kanuri G et alToll like receptor 4 is involved in the develpment of fructose –induced hepatic steatosis in mice. Hepatology 2009;50:1094-1104.
  • 66- Miele L,Valenza V et al increased intestinal permeability and tight junction alterations in nonlcoholic fatty liver disease. Hepatology 2009;49:1877-87.
  • 67- Mouzaki M,Comelli EM et al intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013;58:120-7.
  • 68- Zhu L,Baker SS et al.Characterisation of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients:a connection between endogenous alcohol and NASH. Hepatology 2013;57:601-9.
  • 69- Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299: 1259–1260
  • 70- Ownby DR, Johnson C, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 2002; 288: 963–972.
  • 71- Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358: 1129–1133.
  • 72- Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2012; 2: 94
  • 73- Abrahamsson TR, Jakobsson HE, et al.Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44: 842–850
  • 74- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107: 11971–11975.
  • 75- Renz-Polster H, David MR, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy 2005; 35: 1466–1472.
  • 76- Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance suscept- ibility to allergic asthma. EMBO Rep 2012; 13: 440–447.
  • 77- Stensballe LG, Simonsen J,et al. Use of antibiotics during pregnancy increases the risk of asthma in early child- hood. J Pediatr 2013; 162: 832–838.e833.
  • 78- Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159–166.
  • 79- Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 2016; 8: 43.
  • 80- Zhang X, Zhang D, Jia H. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015; 21: 895–905.
  • 81- Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013; 2: e01202.
  • 82- Gill T,Asquitf M et al. The intestinal microbiome in spondyloarthritis. Curr Opin Rheumatol.2015 July;27(4):319-25.
  • 83- Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate induced colitis. Inflamm Bowel Dis. 2011; 17:917–926.
  • 84- Ebringer R, Cooke D, Cawdell DR et al. Ankylosing spondylitis: klebsiella and HL-A B27. Rheumatol Rehabil. 1977; 16:190–196.
  • 85- Tani Y, Tiwana H, Hukuda S et al. A. Antibodies to Klebsiella, Proteus, and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J Rheumatol. 1997; 24:109–114.
  • 86- Stoll ML, Kumar R, et al.Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014; 16:486.
  • 87- Stebbings S, Munro K, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002; 41:1395–1401.
  • 88- Willing BP, Dicksved J et al.A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010; 139:1844– 1854. e1841.
  • 89- de Silva HJ, Millard PR, Soper N, Kettlewell M, Mortensen N, Jewell DP. Effects of the faecal stream and stasis on the ileal pouch mucosa. Gut 1991; 32: 1166-1169
  • 90- Mangiola F,Ianiro G, et al. Gut microbiota in autizm and mood disorders.World Gastroenterol 2016; J 7;22(1):361-68.
  • 91- Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric Nat Rev Gastroenterol Hepatol microbiota axis. 2009; 6: 306-314.
  • 92- Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701-712.
  • 93- O’Mahony SM, Marchesi JR,et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65: 263-267 [PMID: 1872316
  • 94- Finegold SM, Molitoris D, Song Yet al.Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002; 35: S6-S16 .
  • 95- Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004; 70: 6459-6465.
  • 96- Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005; 54: 987-991 [PMID: 16157555
  • 97- Bolte ER. Autism and Clostridium tetani. Med Hypotheses 1998; 51: 133-144.
  • 98- Sandler RH, Finegold SM, et al.Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15: 429-435
  • 99- Emanuele E, Orsi P,et al. Low-grade endotoxemia in patients with severe autism. Neurosci Lett 2010; 471: 162-165.
  • 100- Evrensel A,Ceylan ME. Fecal microbiata transplantation and its usage in neurophysiatric disorders. Clinical phychopharmacology and neuroscience 2016;14(3):231-37.
  • 101- Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 2013;29:79-84
  • 102- Gondalia SV,Palombo EA ,Knowles SR et al. Molecular characterization of gastrointestinal microbiota of children with autism (with or without gastrointestinal dysfunction) and their nörotypical siblings.Autism Res 2012;5:419427.
  • 103- Schab DW, Trinh NH. Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. J Dev Behav Pediatr. 2004; 25(6):423–434.
  • 104- Jiang H, Ling Z, Zhang Y et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-194. 105- Khanna S, Pardi DS. The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Rev Gastroenterol Hepatol 2010; 4: 409-416.
  • 106- Ait-Belgnaoui A, Durand H, Cartier C,et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats.Physchoneuroendocrinology 2012:37:1885-95.
  • 107- Desbonnet L, Clarke G,et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015; 48: 165-173. 108- Soczynska JK, Mansur RB, et al.Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012; 235: 302-317.
  • 109- Miyaoka T, Wake R, Furuya M,et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37: 222-226.
  • 110- Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psychiatry. 2012; 51(1):86–97.
  • 111- Grigoleit JS, Kullmann JS, Wolf OT,et al. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 2011; 6: e28330 .
  • 112- Naseribafrouei A, Hestad K, Avershina E, et al.Between the human fecal microbiota and depression. Neurogastroenterol Motil 2014; 26: 1155-1162.
  • 113- Jiang H,Ling Z,Zhang Y et al.altered fecal microbiata composition in patients with major depressive disorder.Brain Behav Immun 2015;48:186-194.
  • 114- Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23: 255-264.
  • 115- Clarke G, Grenham S, Scully P, et al.The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18: 666-673.
  • 116- Logan AC, Katzman M. Major depressive disorder: probiotics maybe an adjuvant therapy. Med Hypotheses 2005; 64: 533-538.
  • 117- Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011; 479(7374):538–541.
  • 118- Theoharides TC, Enakuaa S, Sismanopoulos N, et al. Contribution of stress to asthma worsening through mast cell activation. Ann Allergy Asthma Immunol. 2012; 109(1):14–19.
  • 119- Chandler N, Jacobson S, Connolly R, Esposito P, Theoharides TC. Acute stress shortens the time of onset of experimental allergic encephalomyelitis (EAE) in SJL/J mice. Brain Behav Immun. 2002; 16:757–763.
  • 120- Tache Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol. 2001; 280(2):G173–G177.
  • 121- Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. Front Psychiatry. 2015; 6:5.
  • 122- Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008; 84(4):940–948.
  • 123- Mulak A,Bonaz B et al;Brain-gut microbiata axis in Parkinson’s Disease. World J Gastroenterol. 2015 oct 7;21(37):10609-620.
  • 124- Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, et al. Fecal microbiota transplantation broadening its applica- tion beyond intestinal disorders. World J Gastroenterol 2015;21:102-111.
  • 125- Vizcarra JA, Wilson-Perez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson’s disease. Mov Disord 2015; 30: 296-298.
  • 126- Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 2014; 62: 197-202.
  • 127- Ananthaswamy A. Faecal transplant eases symptoms of Parkinson’s disease. New Sci 2011;209:8-9.
  • 128- Scheperjans F, Aho V, Pereira PA, et al.Gut microbiota are related to Parkinson’ s disease and clinical phenotype. Mov Disord 2015; 30: 350-358.
  • 129- Hill J M,Bhattacharjee S et al . The Gastrointestinal tract microbiome and potential link to Alzheimer’s Disease.Frontiers in Neurology 2014 .4;5:43.
  • 130- Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and impli- cations for health and disease. Gastroenterology (2014). doi:10.1053/j.gastro.2014.01.058
  • 131- Schwartz K, Boles BR. Microbial amyloids-functions and interactions within the host. Curr Opin Microbiol (2013) 16:93–9
  • 132- Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis (2014) 39:169–79.
  • 133- Li J,Lee DS et al Evolving bacterial envelopes and plasticity of TLR-2-dependent responses: Basic research and translational opportunities. Front Immunol 4,347. 134- Smith MA, Perry G et al Oxidative damage in Alzheimer’s. Nature 382,120-121.
There are 131 citations in total.

Details

Journal Section Articles
Authors

Hasret Cengiz This is me

Ceyhun Varım This is me

Ali Tamer This is me

Publication Date September 28, 2017
Submission Date September 28, 2017
Acceptance Date September 26, 2017
Published in Issue Year 2017 Volume: 3 Issue: 3

Cite

APA Cengiz, H., Varım, C., & Tamer, A. (2017). Mikrobiata ve Kronik Hastalıklar. Journal of Human Rhythm, 3(3), 126-136.
AMA Cengiz H, Varım C, Tamer A. Mikrobiata ve Kronik Hastalıklar. Journal of Human Rhythm. September 2017;3(3):126-136.
Chicago Cengiz, Hasret, Ceyhun Varım, and Ali Tamer. “Mikrobiata Ve Kronik Hastalıklar”. Journal of Human Rhythm 3, no. 3 (September 2017): 126-36.
EndNote Cengiz H, Varım C, Tamer A (September 1, 2017) Mikrobiata ve Kronik Hastalıklar. Journal of Human Rhythm 3 3 126–136.
IEEE H. Cengiz, C. Varım, and A. Tamer, “Mikrobiata ve Kronik Hastalıklar”, Journal of Human Rhythm, vol. 3, no. 3, pp. 126–136, 2017.
ISNAD Cengiz, Hasret et al. “Mikrobiata Ve Kronik Hastalıklar”. Journal of Human Rhythm 3/3 (September 2017), 126-136.
JAMA Cengiz H, Varım C, Tamer A. Mikrobiata ve Kronik Hastalıklar. Journal of Human Rhythm. 2017;3:126–136.
MLA Cengiz, Hasret et al. “Mikrobiata Ve Kronik Hastalıklar”. Journal of Human Rhythm, vol. 3, no. 3, 2017, pp. 126-3.
Vancouver Cengiz H, Varım C, Tamer A. Mikrobiata ve Kronik Hastalıklar. Journal of Human Rhythm. 2017;3(3):126-3.