Research Article
BibTex RIS Cite

Stability of a Ro-Ro Ship: An Assessment of the Impact of Electric Vehicle Transportation

Year 2024, , 11 - 21, 23.06.2024
https://doi.org/10.58771/joinmet.1397687

Abstract

In terms of service lives, ships have the ability to remain operational for extended periods of time, potentially exceeding several decades. Changes in machinery and equipment are dependent on technological improvements. The above change is most noticeable in the components that make up ship systems. Nonetheless, the movement of ships on the water involves research into a variety of topics, including static-dynamic equilibrium and the demands of speed and power. The study focuses on the growing fascination with electric automobiles, which can be ascribed to technology improvements, environmental policies, and the concept's widespread acceptance. As a result, there has been a boom in interest in purchasing electric vehicles and using them for transportation. When conventional internal combustion engine automobiles are considered during the design process of marine vessels that transport land vehicles, it is expected that electric vehicles (EVs) will be primarily transported by Roll-on/Roll-off (Ro-Ro) ships in the foreseeable future. However, weight discrepancies exist between electric vehicles and other models in the same category. The significant weight attributed to batteries emphasizes the significant possibility for advancement in modern battery technology. The purpose of this research is to look into the variations in the stability of a Ro-Ro vessel when transporting an equal number and weight of EVs and conventional automobiles.

References

  • Antão, P., & Guedes Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 3(2), 107–116. https://doi.org/10.1007/s11633-006-0107-8
  • Barrass, B. (2004). Ship design and performance for masters and mates. Elsevier.
  • Daduna, J. R. (2013). Short sea shipping and river-sea shipping in the multi-modal transport of containers. International Journal of Industrial Engineering : Theory Applications and Practice, 20(1–2), 225–240.
  • Hasegawa, K., Kang, D., Sano, M., Nagarajan, V., & Yamaguchi, M. (2006). A study on improving the course-keeping ability of a pure car carrier in windy conditions. Journal of Marine Science and Technology, 11(2), 76–87. https://doi.org/10.1007/s00773-006-0214-9
  • Ibrahim, R. A., & Grace, I. M. (2010). Modeling of ship roll dynamics and its coupling with heave and pitch. Mathematical Problems in Engineering, 2010.
  • IEA. (2023). Electric Vehicles. https://www.iea.org/energy-system/transport/electric-vehicles%0A, Access date: 10 August 2023.
  • Im, N.-K., & Choe, H. (2021). A quantitative methodology for evaluating the ship stability using the index for marine ship intact stability assessment model. International Journal of Naval Architecture and Ocean Engineering, 13, 246-259.
  • IMO. (2008). MSC. 267 (85)-adoption of the international code on intact stability. International Maritime Organisation (IMO), 12-17. http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Maritime-Safety-Committee-(MSC)/Pages/default.aspx
  • IMO. (2020). MSC. 1-Circ. 1627 Interim Guidelines on the Second Generation Intact Stability Criteria. IMO. http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Maritime-Safety-Committee-(MSC)/Pages/default.aspx
  • IMO. (2022). SDC. 8/WP. 4/Add. 2 Development of Explanatory Notes to the Interim Guidelines on Second generation intact stability criteria. IMO.
  • Jia, J. (2007). Investigations of vehicle securing without lashings for Ro-Ro ships. Journal of Marine Science and Technology, 12(1), 43–57. https://doi.org/10.1007/s00773-006-0240-7
  • Kafalı, K. (1988). Gemilerin dizaynı. İTÜ Baskısı.
  • Kane, M. (2023). Electric Cars From Heaviest To Lightest.
  • Kang, M. H., Choi, H. R., Kim, H. S., & Park, B. J. (2012). Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36, 585–604. https://doi.org/10.1007/s10489-011-0278-z
  • Kennedy, C. (2023). RO-RO Ferries and the Expansion of the PLA’s Landing Ship Fleet. https://cimsec.org/ro-ro-ferries-and-the-expansion-of-the-plas-landing-ship-fleet/
  • Kupras, L. K. (1981). Design charts for determining main dimensions, main engine power and building costs of bulkcarriers. International Shipbuilding Progress, 28(322), 136–150.
  • Liwång, H. (2019). Exposure, vulnerability and recoverability in relation to a ship’s intact stability. Ocean Engineering, 187, 106218. https://doi.org/10.1016/j.oceaneng.2019.106218
  • Marlantes, K. E., Kim, S., & Hurt, L. A. (2021). Implementation of the IMO second generation intact stability guidelines. Journal of Marine Science and Engineering, 10(1), 41.
  • Mok, I. S., D'agostini, E., & Ryoo, D. K. (2023). A validation study of ISM Code's continual effectiveness through a multilateral comparative analysis of maritime accidents in Korean waters. The Journal of Navigation, 76(1), 77-90.
  • Nieuwenhuis, P. (2017). Car Shipping. In A. Beresford & S. Pettit (Eds.), International Freight Transport: Cases, Structures and Prospects. Kogan Page.
  • Perrault, D. (2016). Correlations of GZ curve parameters. In 15 th International Ship Stability Workshop, ISSW.
  • Riess, R., & Gray, M. (2021). The Golden Ray cargo ship capsized because of inaccurate stability calculations, the NTSB finds. https://edition.cnn.com/2021/09/14/us/golden-ray-cargo-ship-ntsb-report/index.html, Access date: 13 August 2023.
  • Rudaković, S., & Bačkalov, I. (2019). Operational limitations of a river-sea container vessel in the framework of the Second Generation Intact Stability Criteria. Ocean Engineering, 183, 409–418. https://doi.org/10.1016/j.oceaneng.2019.05.013
  • Ruggiero, V. (2015). 2004-2014 Ten years of changing in the project of passenger ferries on Italian lakes, due to the 2006/87/CE and consequent rules. 18th International Conference on Ships and Shipping Research, NAV 2015, 1080–1089.
  • Schramm, H. J. (2020). A cliometric approach to market structure and market conduct in the car carrier industry. Case Studies on Transport Policy, 8(2), 394–402. https://doi.org/10.1016/j.cstp.2019.03.012
  • Shakeel, M., Khalid, H., Riaz, Z., Ansari, S. A., & Khan, M. J. (2022, August). Development of Intact Stability Calculations Tool for Ships. In 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 858-872). IEEE.
  • Silvanius, M. (2009). Wind assisted propulsion for pure car and truck carriers (Issue January) [Royal Institute of technology (KTH)]. http://www.kth.se/polopoly_fs/1.162363!/Menu/general/column-content/attachment/SilvaniusThesis.pdf
  • Simopoulos, G., Konovessis, D., & Vassalos, D. (2008). Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels. Journal of Marine Science and Technology, 13(2), 164–177. https://doi.org/10.1007/s00773-007-0261-x
  • Skoupas, S., Zaraphonitis, G., & Papanikolaou, A. (2009). Parametric Design and Optimization of High-Speed , Twin-Hull RoRo- Passenger Vessels. Proceedings of the 10th International Marine Design Conference.
  • Sun, X., Wang, S., Wang, Z., Liu, C., & Yin, Y. (2022). A semi-automated approach to stowage planning for Ro-Ro ships. Ocean Engineering, 247, 110648. https://doi.org/10.1016/j.oceaneng.2022.110648
  • Thies, F., & Ringsberg, J. W. (2023). Retrofitting WASP to a RoPax Vessel—Design, Performance and Uncertainties. Energies, 16(2). https://doi.org/10.3390/en16020673
  • Tuswan, T., Zubaydi, A., Piscesa, B., Ismail, A., Ariesta, R. C., Ilham, M. F., & Mualim, F. I. (2021). Influence of application of sandwich panel on static and dynamic behaviour of ferry ro-ro ramp door. Journal of Applied Engineering Science, 19(1), 208–216. https://doi.org/10.5937/jaes0-27708
  • Yasukawa, H. (2019). Maneuvering hydrodynamic derivatives and course stability of a ship close to a bank. Ocean Engineering, 188(September), 106149. https://doi.org/10.1016/j.oceaneng.2019.106149

Bir Ro-Ro Gemisinin Stabilitesi: Elektrikli Araç Taşımacılığının Etkisinin Değerlendirilmesi

Year 2024, , 11 - 21, 23.06.2024
https://doi.org/10.58771/joinmet.1397687

Abstract

Hizmet ömürleri açısından gemiler, potansiyel olarak birkaç on yılı aşan uzun süreler boyunca çalışır durumda kalma kapasitesine sahiptir. Makine ve ekipmanlardaki değişiklikler teknolojik gelişmelere bağlıdır. Gemilerdeki değişiklikler en çok gemi sistemlerini oluşturan bileşenlerde fark edilmektedir. Bununla birlikte, gemilerin su üzerindeki hareketi, statik-dinamik denge ve hız-güç talepleri de dahil olmak üzere çeşitli konuların araştırılmasını gerektirir. Çalışma, teknolojik gelişmelere, çevre politikalarına ve konseptin yaygın kabulüne atfedilebilecek elektrikli otomobillere yönelik artan ilgiye odaklanıyor. Bunun sonucunda elektrikli araçların satın alınması ve ulaşımda kullanılmasına ilgide patlama yaşanmaktadır. Kara taşıtlarını taşıyan deniz araçlarının tasarım sürecinde konvansiyonel içten yanmalı motorlu otomobiller dikkate alındığında, öngörülebilir gelecekte elektrikli araçların (EV) öncelikli olarak Roll-on/Roll-off (Ro-Ro) gemilerle taşınması beklenmektedir. Ancak elektrikli araçlar ile aynı kategorideki diğer modeller arasında ağırlık farklılıkları mevcuttur. Pillere atfedilen kayda değer ağırlık farkı, modern pil teknolojisindeki önemli ilerleme olasılığını vurgulamaktadır. Bu araştırmanın amacı, eşit sayıda ve ağırlıkta elektrikli araç ve konvansiyonel otomobil taşıyan bir Ro-Ro gemisinin stabilitesindeki değişiklikleri incelemektir.

References

  • Antão, P., & Guedes Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 3(2), 107–116. https://doi.org/10.1007/s11633-006-0107-8
  • Barrass, B. (2004). Ship design and performance for masters and mates. Elsevier.
  • Daduna, J. R. (2013). Short sea shipping and river-sea shipping in the multi-modal transport of containers. International Journal of Industrial Engineering : Theory Applications and Practice, 20(1–2), 225–240.
  • Hasegawa, K., Kang, D., Sano, M., Nagarajan, V., & Yamaguchi, M. (2006). A study on improving the course-keeping ability of a pure car carrier in windy conditions. Journal of Marine Science and Technology, 11(2), 76–87. https://doi.org/10.1007/s00773-006-0214-9
  • Ibrahim, R. A., & Grace, I. M. (2010). Modeling of ship roll dynamics and its coupling with heave and pitch. Mathematical Problems in Engineering, 2010.
  • IEA. (2023). Electric Vehicles. https://www.iea.org/energy-system/transport/electric-vehicles%0A, Access date: 10 August 2023.
  • Im, N.-K., & Choe, H. (2021). A quantitative methodology for evaluating the ship stability using the index for marine ship intact stability assessment model. International Journal of Naval Architecture and Ocean Engineering, 13, 246-259.
  • IMO. (2008). MSC. 267 (85)-adoption of the international code on intact stability. International Maritime Organisation (IMO), 12-17. http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Maritime-Safety-Committee-(MSC)/Pages/default.aspx
  • IMO. (2020). MSC. 1-Circ. 1627 Interim Guidelines on the Second Generation Intact Stability Criteria. IMO. http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Maritime-Safety-Committee-(MSC)/Pages/default.aspx
  • IMO. (2022). SDC. 8/WP. 4/Add. 2 Development of Explanatory Notes to the Interim Guidelines on Second generation intact stability criteria. IMO.
  • Jia, J. (2007). Investigations of vehicle securing without lashings for Ro-Ro ships. Journal of Marine Science and Technology, 12(1), 43–57. https://doi.org/10.1007/s00773-006-0240-7
  • Kafalı, K. (1988). Gemilerin dizaynı. İTÜ Baskısı.
  • Kane, M. (2023). Electric Cars From Heaviest To Lightest.
  • Kang, M. H., Choi, H. R., Kim, H. S., & Park, B. J. (2012). Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36, 585–604. https://doi.org/10.1007/s10489-011-0278-z
  • Kennedy, C. (2023). RO-RO Ferries and the Expansion of the PLA’s Landing Ship Fleet. https://cimsec.org/ro-ro-ferries-and-the-expansion-of-the-plas-landing-ship-fleet/
  • Kupras, L. K. (1981). Design charts for determining main dimensions, main engine power and building costs of bulkcarriers. International Shipbuilding Progress, 28(322), 136–150.
  • Liwång, H. (2019). Exposure, vulnerability and recoverability in relation to a ship’s intact stability. Ocean Engineering, 187, 106218. https://doi.org/10.1016/j.oceaneng.2019.106218
  • Marlantes, K. E., Kim, S., & Hurt, L. A. (2021). Implementation of the IMO second generation intact stability guidelines. Journal of Marine Science and Engineering, 10(1), 41.
  • Mok, I. S., D'agostini, E., & Ryoo, D. K. (2023). A validation study of ISM Code's continual effectiveness through a multilateral comparative analysis of maritime accidents in Korean waters. The Journal of Navigation, 76(1), 77-90.
  • Nieuwenhuis, P. (2017). Car Shipping. In A. Beresford & S. Pettit (Eds.), International Freight Transport: Cases, Structures and Prospects. Kogan Page.
  • Perrault, D. (2016). Correlations of GZ curve parameters. In 15 th International Ship Stability Workshop, ISSW.
  • Riess, R., & Gray, M. (2021). The Golden Ray cargo ship capsized because of inaccurate stability calculations, the NTSB finds. https://edition.cnn.com/2021/09/14/us/golden-ray-cargo-ship-ntsb-report/index.html, Access date: 13 August 2023.
  • Rudaković, S., & Bačkalov, I. (2019). Operational limitations of a river-sea container vessel in the framework of the Second Generation Intact Stability Criteria. Ocean Engineering, 183, 409–418. https://doi.org/10.1016/j.oceaneng.2019.05.013
  • Ruggiero, V. (2015). 2004-2014 Ten years of changing in the project of passenger ferries on Italian lakes, due to the 2006/87/CE and consequent rules. 18th International Conference on Ships and Shipping Research, NAV 2015, 1080–1089.
  • Schramm, H. J. (2020). A cliometric approach to market structure and market conduct in the car carrier industry. Case Studies on Transport Policy, 8(2), 394–402. https://doi.org/10.1016/j.cstp.2019.03.012
  • Shakeel, M., Khalid, H., Riaz, Z., Ansari, S. A., & Khan, M. J. (2022, August). Development of Intact Stability Calculations Tool for Ships. In 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 858-872). IEEE.
  • Silvanius, M. (2009). Wind assisted propulsion for pure car and truck carriers (Issue January) [Royal Institute of technology (KTH)]. http://www.kth.se/polopoly_fs/1.162363!/Menu/general/column-content/attachment/SilvaniusThesis.pdf
  • Simopoulos, G., Konovessis, D., & Vassalos, D. (2008). Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels. Journal of Marine Science and Technology, 13(2), 164–177. https://doi.org/10.1007/s00773-007-0261-x
  • Skoupas, S., Zaraphonitis, G., & Papanikolaou, A. (2009). Parametric Design and Optimization of High-Speed , Twin-Hull RoRo- Passenger Vessels. Proceedings of the 10th International Marine Design Conference.
  • Sun, X., Wang, S., Wang, Z., Liu, C., & Yin, Y. (2022). A semi-automated approach to stowage planning for Ro-Ro ships. Ocean Engineering, 247, 110648. https://doi.org/10.1016/j.oceaneng.2022.110648
  • Thies, F., & Ringsberg, J. W. (2023). Retrofitting WASP to a RoPax Vessel—Design, Performance and Uncertainties. Energies, 16(2). https://doi.org/10.3390/en16020673
  • Tuswan, T., Zubaydi, A., Piscesa, B., Ismail, A., Ariesta, R. C., Ilham, M. F., & Mualim, F. I. (2021). Influence of application of sandwich panel on static and dynamic behaviour of ferry ro-ro ramp door. Journal of Applied Engineering Science, 19(1), 208–216. https://doi.org/10.5937/jaes0-27708
  • Yasukawa, H. (2019). Maneuvering hydrodynamic derivatives and course stability of a ship close to a bank. Ocean Engineering, 188(September), 106149. https://doi.org/10.1016/j.oceaneng.2019.106149
There are 33 citations in total.

Details

Primary Language English
Subjects Naval Architecture
Journal Section Research Articles
Authors

Burak Göksu 0000-0002-6152-0208

Publication Date June 23, 2024
Submission Date November 29, 2023
Acceptance Date February 9, 2024
Published in Issue Year 2024

Cite

APA Göksu, B. (2024). Stability of a Ro-Ro Ship: An Assessment of the Impact of Electric Vehicle Transportation. Journal of Marine and Engineering Technology, 4(1), 11-21. https://doi.org/10.58771/joinmet.1397687