Review Article
BibTex RIS Cite

Optoelektronik Uygulamalar için Grafen

Year 2024, , 30 - 43, 23.06.2024
https://doi.org/10.58771/joinmet.1498953

Abstract

ÖZ
Grafen ilk izolasyonunun gerçekleştirildiği 2004 yılından beri iki-boyutlu nano materyaller arasında bir yıldız olarak araştırmacıların dikkatini çekmektedir. Özellikle yeni keşfedilen 2D boyutlu materyal ailesi boyutsallıklarına bağlı olarak esneklik özelliğinin oluşumuna olanak sağlamaktadır. Bilinen ilk iki-boyutlu nano materyal olan grafenin sahip olduğu mükemmel termal, elektronik, optik ve mekaniksel özelliklerinin zenginliğinin yanı sıra, eşsiz 2D yapısından dolayı esnek optoelektronik aygıt uygulamalarında sıklıkla tercih edilmektedir. Bu sayede insan arayüzlü cihazlar, robotik cilt, giyilebilir optoelektronik cihazlar, dokunmatik ekranlar, ultra hızı lazerler ve ışık yayan aygıtlar gibi esnek ya da gerilebilir cihazlara duyulan büyük ilginin oluşmasına ve bu alanda yürütülen çalışmaların hız kazanmasına sebep olmaktadır. Bu incelemede, grafen tabanlı optoelektronik aygıtların geliştirilmesindeki son gelişmelere kapsamlı bir genel bakış açısı sunmanın yanı sıra bu alana ilişkin gelecek perspektifleri de tartışılmaktadır.

References

  • Abdelkader, A.M., et al., (2017). Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 4(3): p. 035016. https://doi.org/10.1088/2053-1583/aa7d71
  • Abdel Ghany, N. A., Elsherif, S. A., Handal, H. T., (2017). Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9, 93-106. https://doi.org/10.1016/j.surfin.2017.08.004
  • Ahn, J.-H., and Hong, B.H., (2014). Graphene for displays that bend. Nat. Nanotechnol, 9 (10), 737–738.
  • Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., Geim, A. K., (2007). Making graphene visible. Appl. Phys. Lett. 91, 063124. http://dx.doi.org/10.1063/1.2768624
  • Bolotin, K.I., et al. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146 (9-10): p. 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
  • Bonaccorso F., Sun Z., Hasan T., Ferrari AC., (2010). Graphene photonics and optoelectronics. Nat Photonics, 4:611–622. https://doi.org/10.1038/nphoton.2010.186
  • Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., (2015). V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science ,347 (6217),1246501.
  • Brıtnell, L., Gorbachev, R. V., Jalıl. R., Belle, B. D., Schedın, F., Mıshchenko, A., Georgıou, T., Katsnelson, M. I., Eaves, L., et al. (2012). Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, Vol 335, Issue 6071, pp. 947-950. https://doi.org/10.1126/science.1218461
  • C. Rao et al. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry, 19(17), 2457-2469. https://doi.org/10.1039/b815239j
  • Cao, Y., et al. (2018). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556,43-50.
  • Cao, Y., Wang, N., Tian, H., Guo, J., Wei, Y., Chen, H., Miao, Y., Zou, W., Pan, K., He, Y., (2018). Perovskite light-emitting diodes based on spontaneously formed submicrometrescale structures. Nature, 562 (7726) 249–253.
  • Caridad et al., (2024). Room-Temperature Plasmon-Assisted Resonant THz Detection in Single-Layer Graphene Transistors. Nano Lett., 24, 3, 935–942. https://doi.org/10.1021/acs.nanolett.3c04300
  • Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K. S., Ferrari, A. C., (2007). Rayleigh Imaging of Graphene andGraphene Layers. Nano Lett., 7, 2711.
  • Castelvecchi, D., Stoye, E., (2019). Chemistry Nobel honours world-changing batteries. Nature, 574 (7777), 308–309.
  • Charlier, J.-C., Eklund, P. C., Zhu J., & Ferrari, A. C., (2008). Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. Appl. Physics, 111, 673–709.
  • Chu, S., Chen, W., Fang, Z., Xiao, X., Liu, Y., Chen, J., Huang, J., Xiao, Z., (2021) Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun., 12 (1) 1–9.
  • De, S. et al., (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios. ACS Nano, 3, 1767–1774.
  • Dragoman M., Dragoman D., (2009). Graphene-based quantum electronics. Prog Quantum. Progress in Quantum Electronics, 33(6):165–214. https://doi.org/10.1016/j.pquantelec.2009.08.001
  • El-Kady, M. F., Shao, Y., and Kaner R. B., (2016). Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1, 16033 https://doi.org/10.1038/natrevmats.2016.3
  • Ellmer, K., (2012). Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 6 (12), 809–817.
  • Gadipelli, S.,Guo, Z.X., (2015). Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater Sci., 69 (2015) 1–60. https://doi.org/10.1016/j.pmatsci.2014.10.004
  • Geim, A. K., Novoselov, K. S., (2007). The rise of graphene. Nat. Mater., 6, 183
  • Hamberg, I. & Granqvist, C. G., (1986). Evaporated Sn-doped In2O3 fi lms: basic optical properties and applications to energy-efficient windows. J. Appl. Phys., 60, R123–R160.
  • Han, T.-H., Lee, Y., Choi, M.-R., Woo, S.-H., Bae, S.-H., Hong, B.H., Ahn, J.-H., Lee, T.W., (2012). Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics, 6 (2) 105–110.
  • He, J., et al., (2021). Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 597 (7874) 57–63.
  • Hecht, D.S., Hu, L., Irvin, G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 23 (13), 1482–1513. https://doi.org/10.1002/adma.201003188
  • Holland, L. & Siddall, G., (1953). Th e properties of some reactively sputtered metal oxide films. Vacuum, 3, 375–391.
  • Huang, X. et al., (2023). Transparent shape memory polyimide enables OLED for smart deformation. Composites: Part A, 175 107781. https://doi.org/10.1016/j.compositesa.2023.107781
  • Iyechika, Y., (2010). Application of graphene to high-speed transistors: expectations and challenge. Sci Techno Trends—Q Rev, 37:3776–3792.
  • Jehad, A.K., Fidan, M., Ünverdi, O., Çelebi, C., (2023). CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed. Sensors and Actuators, A. Physical, 355,114309. https://doi.org/10.1016/j.sna.2023.114309
  • Jinlei Miao, J., and Fan, T., (2023). Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 202, 495-527. https://doi.org/10.1016/j.carbon.2022.11.018
  • Kim, K.S., et al., (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230): p. 706-710.
  • Köç Bakacak, P., Tüzemen, S., Kocabaş, C., (2021). New practical device structure for graphen-based electrochromic devices. Optical Materials, 122, 111675. https://doi.org/10.1016/j.optmat.2021.111675
  • Köç, P., (2013).Stimulated electroluminescence emission from n-ZnO/p-GaAs: Zn heterojunctions fabricated by electro-deposition. AIP Advances, 3, 122107. https://doi.org/10.1063/1.4842635
  • Kumar, N., et al., (2021). Top-down synthesis of graphene: A comprehensive review. FlatChem, 27,100224. https://doi.org/10.1016/j.flatc.2021.100224
  • Kumar, R., et al., (2019). A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res, 12(11):2655–94. https://doi.org/10.1007/s12274-019-2467-8
  • Li, X., et al., (2024). Laser fabrication of epidermal paper-based graphene sensors. Applied MaterialsToday, 36, 102051. https://doi.org/10.1016/j.apmt.2023.102051
  • Lin, K., Xing, J., Quan, L.N., De Arquer, F., Gong, X., Lu, J., Xie, L., Zhao, W., Zhang, D., Yan, C., (2018). Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562 (7726) 245–248.
  • Liu, L., Dong, R., Ye, D., Lu, Y., Xia, P., Deng, L., Duan, Y., Cao, K., Chen, S., (2021). Phosphomolybdic acid-modified monolayer graphene anode for efficient organic and perovskite light-emitting diodes. ACS Appl. Mater. Interfaces, 13 (10) 12268–12277. https://doi.org/10.1021/acsami.0c22456
  • Liu, R., Wang, Z.L., Fukuda, K., Someya, T., (2022). Flexible self-charging power sources. Nat. Rev. Mater., 1–17.
  • Liu, W., Song, M.S., Kong, B., Cui, Y.,(2017). Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater., 29 (1), 1603436. https://doi.org/10.1002/adma.201603436
  • Ludwing et al., (2024). Terahertz Detection with Graphene FETs: Photothermoelectric and Resistive Self-Mixing Contributions to the Detector Response. ACS Appl. Electron. Mater., 6, 4, 2197–2212. https://doi.org/10.1021/acsaelm.3c01511
  • Ma, R., Zhou, Y., Bi, H., Yang, M., Wang, J., Liu, Q, et al. (2020). Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog Mater Sci., 113,100665. https://doi.org/10.1016/j.pmatsci.2020.100665
  • Mak, K. F., Sfeir, M. Y., Misewich, J. A., Heinz, T.F., (2009). Electronic Structure of Few-Layer Graphene: Experimental Demonstration of Strong Dependence on Stacking Sequence. Phys. Rev. Lett., 104, 176404. http://dx.doi.org/10.1103/PhysRevLett.104.176404
  • Mbayachi, V., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E., Khan, A., (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163
  • Minami, T., (2005). Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 20, S35–S44.
  • Mohebbi, E., Pavoni, E., Pierantoni, L., Stipa, P., Hemmetter, A., Laudadio, E., and Mencarelli, D., (2024). Towards graphene-based asymmetric diodes: a density functional tight-binding study. | Nanoscale Adv., 6, 1548-1555. https://doi.org/10.1039/D3NA00603D
  • Na, Y.W., Cheon, J.Y., Kim, J.H., Jung, Y., Lee, K., Park, J.S., Park, J.Y., Song, K.S., Lee, S.B., Kim, T., (2022). All-in-one flexible supercapacitor with ultrastable performance under extreme load. Sci. Adv., 8 (1), eabl8631. https://doi.org/10.1126/sciadv.abl8631
  • Nair, M., Mishra, S., Dahiya, R., (2023). Graphene-Based Touch Sensors. Encyclopedia of Materials: Electronics, 3,54-70. https://doi.org/10.1016/B978-0-12-819728-8.00122-4
  • Nair, R. R., et al (2008). Fine structure constant defines visual transparency of graphene. Science 320, 1308. https://doi.org/10.1126/science.1156965
  • Neto, AHC., Novoselov KS., (2011). New directions in science and technology: twodimensional crystals. Rep Prog Phys., 74:082501. http://dx.doi.org/10.1088/0034-4885/74/8/082501
  • Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., Sayed, E.T., (2021). Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 135, 110026. https://doi.org/10.1016/j.rser.2020.110026
  • Patil, J.J., Chae, W.H., Trebach, A., Carter, K.J., Lee, E., Sannicolo, T., Grossman, J.C., (2021). Failing forward: stability of transparent electrodes based on metal nanowire networks. Adv. Mater., 33 (5), 2004356. https://doi.org/10.1002/adma.202004356
  • Perala, R., , Chandrasekar, N., Balaji, R., Alexander, P., Humaidi , N., Hwang, M., (2024). A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications. Materials Science and Engineering: R, Volume 159, 100805. https://doi.org/10.1016/j.mser.2024.100805
  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., Gogotsi, Y., (2019). Energy storage: the future enabled by nanomaterials. Science, 366 (6468) eaan8285. https://doi.org/10.1126/science.aan8285
  • Sanz, S., et al. (2020). Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Physical Review Letters,124, (171), 177201. https://doi.org/10.1103/PhysRevLett.124.177201
  • Sarma SD., Adam S., Hwang EH., Rossi E., (2011). Electronic transport in two-dimensional graphene. Rev Mod Phys., 83:407–470. https://doi.org/10.1103/RevModPhys.83.407
  • Seekaew, Y., Arayawut, O., Timsorn, K., Wongchoosuk, C., (2019). Chapter Nine - Synthesis, Characterization, and Applications of Graphene and Derivatives. Carbon-Based Nanofillers and their Rubber Nanocomposites, Elsevier, pp. 259–283. https://doi.org/10.1016/B978-0-12-813248-7.00009-2
  • Shams, S., Zhang, R., and Zhu, J., (2015). Graphene synthesis: a Review. Materials Science-Poland, 33(3), pp. 566-578. https://doi.org/10.1515/msp-2015-0079
  • Shinohara, H., Tiwari, A., (2015). Graphene: an introduction to the fundamentals and industrial applications. John Wiley & Sons.
  • Siow, L., Lee, J., Ooi, E., and Lau, E., (2024). Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review. Renewable and Sustainable Energy Reviews, 193(3-4), 114288. https://doi.org/10.1016/j.rser.2024.114288
  • Sua, H., and , Hu, Y.H., (2023). 3D graphene: synthesis, properties, and solar cell applications. Chemical Communications, 59(44),6660-6673. https://doi.org/10.1039/d3cc01004j
  • Trivedi, S., Lobo, K., and Matte, H.R., (2019). Synthesis, Properties, and Applications of Graphene. Fundamentals and Sensing Applications of 2D Materials, Elsevier, pp. 25–90. https://doi.org/10.1016/B978-0-08-102577-2.00003-8
  • Velasco-Soto, M.A., Pérez-García, S.A., Alvarez-Quintana, J., Cao. Y., Nyborg L., Licea-Jiménez, L., (2015). Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon, 93,967-973. https://doi.org/10.1016/j.carbon.2015.06.013
  • Vicarelli, L. et al., (2012). Graphene field-effect transistors as room-temperature terahertz detectors. 2012. 11(10): p. 865-871.
  • Wallace P. R., (1947). The Band Theory of Graphite. Phys. Rev. 71, 622. https://doi.org/10.1103/PhysRev.71.622
  • Wang, S., Liang, L., Chen, S., (2024). Tensile strength and toughness of carbon nanotube-graphene foam composite materials and the corresponding microscopic influence mechanism. Materials & Design, 237,112529. https://doi.org/10.1016/j.matdes.2023.112529
  • Wang, X., Shi, G., (2015). Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci., 8 (3),790–823.
  • Wu, Y. et al., (2011). High-frequency, scaled graphene transistors on diamond-like. Carbon, 472(7341): p. 74-78.
  • Yang, G., Li, L., Lee, W.B., and Man Cheung Ng, (2018). Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater., 19(1): p. 613-648. https://doi.org/10.1080/14686996.2018.1494493
  • Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S.W., Cui, Y., (2011). Transparent lithium-ion batteries. Proc. Natl. Acad. Sci., USA 108 (32), 13013–13018. https://doi.org/10.1073/pnas.1102873108
  • Zhang, F., Yang, K., Liu, G., Chen, Y., Wang, M., Li, S., (2022). Recent advances on graphene: Synthesis, properties and applications. Composites Part A, 160,107051. https://doi.org/10.1016/j.compositesa.2022.107051
  • Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823.
  • Zhao, W., Jiang, M., Wang, W., Liu, S., Huang, W., Zhao, Q., (2021). Flexible transparent supercapacitors: materials and devices. Adv. Funct. Mater., 31 (11), 2009136. https://doi.org/10.1002/adfm.202009136
  • Zhao, Y., Liu, H., Yan, Y., Chen, T., Yu, H., Ejeta, L.O., Zhang, G., Duan, H., (2022). Flexible transparent electrochemical energy conversion and storage: from electrode structures to integrated applications. Energy & Environ. Mater., 6,12303. https://doi.org/10.1002/eem2.12303
  • Zurutuza, A., Marinelli, C., (2014). Challenges and opportunities in graphene commercialization. Nat. Nanotechnol, 9 (10) 730–734.

Graphene for Optoelectronic Applications

Year 2024, , 30 - 43, 23.06.2024
https://doi.org/10.58771/joinmet.1498953

Abstract

Graphene has attracted the attention of researchers as a star among two-dimensional nanomaterials since its first isolation in 2004.In particular, the newly discovered 2D-dimensional material family allows the formation of flexibility properties depending on their dimensionality.Graphene, the first known two-dimensional nanomaterial, is frequently preferred in flexible optoelectronic device applications due to its unique 2D structure, as well as its excellent thermal, electronic, optical, and mechanical properties.In this way, it causes great interest in flexible or stretchable devices such as human interface devices, robotic skin, wearable optoelectronic devices, touch screens, ultra-fast lasers, and light-emitting devices and the acceleration of studies in this field.This review provides a comprehensive overview of the latest advances in the development of graphene-based optoelectronic devices, as well as discusses future perspectives for this field

References

  • Abdelkader, A.M., et al., (2017). Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 4(3): p. 035016. https://doi.org/10.1088/2053-1583/aa7d71
  • Abdel Ghany, N. A., Elsherif, S. A., Handal, H. T., (2017). Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9, 93-106. https://doi.org/10.1016/j.surfin.2017.08.004
  • Ahn, J.-H., and Hong, B.H., (2014). Graphene for displays that bend. Nat. Nanotechnol, 9 (10), 737–738.
  • Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., Geim, A. K., (2007). Making graphene visible. Appl. Phys. Lett. 91, 063124. http://dx.doi.org/10.1063/1.2768624
  • Bolotin, K.I., et al. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146 (9-10): p. 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
  • Bonaccorso F., Sun Z., Hasan T., Ferrari AC., (2010). Graphene photonics and optoelectronics. Nat Photonics, 4:611–622. https://doi.org/10.1038/nphoton.2010.186
  • Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., (2015). V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science ,347 (6217),1246501.
  • Brıtnell, L., Gorbachev, R. V., Jalıl. R., Belle, B. D., Schedın, F., Mıshchenko, A., Georgıou, T., Katsnelson, M. I., Eaves, L., et al. (2012). Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, Vol 335, Issue 6071, pp. 947-950. https://doi.org/10.1126/science.1218461
  • C. Rao et al. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry, 19(17), 2457-2469. https://doi.org/10.1039/b815239j
  • Cao, Y., et al. (2018). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556,43-50.
  • Cao, Y., Wang, N., Tian, H., Guo, J., Wei, Y., Chen, H., Miao, Y., Zou, W., Pan, K., He, Y., (2018). Perovskite light-emitting diodes based on spontaneously formed submicrometrescale structures. Nature, 562 (7726) 249–253.
  • Caridad et al., (2024). Room-Temperature Plasmon-Assisted Resonant THz Detection in Single-Layer Graphene Transistors. Nano Lett., 24, 3, 935–942. https://doi.org/10.1021/acs.nanolett.3c04300
  • Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K. S., Ferrari, A. C., (2007). Rayleigh Imaging of Graphene andGraphene Layers. Nano Lett., 7, 2711.
  • Castelvecchi, D., Stoye, E., (2019). Chemistry Nobel honours world-changing batteries. Nature, 574 (7777), 308–309.
  • Charlier, J.-C., Eklund, P. C., Zhu J., & Ferrari, A. C., (2008). Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. Appl. Physics, 111, 673–709.
  • Chu, S., Chen, W., Fang, Z., Xiao, X., Liu, Y., Chen, J., Huang, J., Xiao, Z., (2021) Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun., 12 (1) 1–9.
  • De, S. et al., (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios. ACS Nano, 3, 1767–1774.
  • Dragoman M., Dragoman D., (2009). Graphene-based quantum electronics. Prog Quantum. Progress in Quantum Electronics, 33(6):165–214. https://doi.org/10.1016/j.pquantelec.2009.08.001
  • El-Kady, M. F., Shao, Y., and Kaner R. B., (2016). Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1, 16033 https://doi.org/10.1038/natrevmats.2016.3
  • Ellmer, K., (2012). Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 6 (12), 809–817.
  • Gadipelli, S.,Guo, Z.X., (2015). Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater Sci., 69 (2015) 1–60. https://doi.org/10.1016/j.pmatsci.2014.10.004
  • Geim, A. K., Novoselov, K. S., (2007). The rise of graphene. Nat. Mater., 6, 183
  • Hamberg, I. & Granqvist, C. G., (1986). Evaporated Sn-doped In2O3 fi lms: basic optical properties and applications to energy-efficient windows. J. Appl. Phys., 60, R123–R160.
  • Han, T.-H., Lee, Y., Choi, M.-R., Woo, S.-H., Bae, S.-H., Hong, B.H., Ahn, J.-H., Lee, T.W., (2012). Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics, 6 (2) 105–110.
  • He, J., et al., (2021). Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 597 (7874) 57–63.
  • Hecht, D.S., Hu, L., Irvin, G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 23 (13), 1482–1513. https://doi.org/10.1002/adma.201003188
  • Holland, L. & Siddall, G., (1953). Th e properties of some reactively sputtered metal oxide films. Vacuum, 3, 375–391.
  • Huang, X. et al., (2023). Transparent shape memory polyimide enables OLED for smart deformation. Composites: Part A, 175 107781. https://doi.org/10.1016/j.compositesa.2023.107781
  • Iyechika, Y., (2010). Application of graphene to high-speed transistors: expectations and challenge. Sci Techno Trends—Q Rev, 37:3776–3792.
  • Jehad, A.K., Fidan, M., Ünverdi, O., Çelebi, C., (2023). CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed. Sensors and Actuators, A. Physical, 355,114309. https://doi.org/10.1016/j.sna.2023.114309
  • Jinlei Miao, J., and Fan, T., (2023). Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 202, 495-527. https://doi.org/10.1016/j.carbon.2022.11.018
  • Kim, K.S., et al., (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230): p. 706-710.
  • Köç Bakacak, P., Tüzemen, S., Kocabaş, C., (2021). New practical device structure for graphen-based electrochromic devices. Optical Materials, 122, 111675. https://doi.org/10.1016/j.optmat.2021.111675
  • Köç, P., (2013).Stimulated electroluminescence emission from n-ZnO/p-GaAs: Zn heterojunctions fabricated by electro-deposition. AIP Advances, 3, 122107. https://doi.org/10.1063/1.4842635
  • Kumar, N., et al., (2021). Top-down synthesis of graphene: A comprehensive review. FlatChem, 27,100224. https://doi.org/10.1016/j.flatc.2021.100224
  • Kumar, R., et al., (2019). A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res, 12(11):2655–94. https://doi.org/10.1007/s12274-019-2467-8
  • Li, X., et al., (2024). Laser fabrication of epidermal paper-based graphene sensors. Applied MaterialsToday, 36, 102051. https://doi.org/10.1016/j.apmt.2023.102051
  • Lin, K., Xing, J., Quan, L.N., De Arquer, F., Gong, X., Lu, J., Xie, L., Zhao, W., Zhang, D., Yan, C., (2018). Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562 (7726) 245–248.
  • Liu, L., Dong, R., Ye, D., Lu, Y., Xia, P., Deng, L., Duan, Y., Cao, K., Chen, S., (2021). Phosphomolybdic acid-modified monolayer graphene anode for efficient organic and perovskite light-emitting diodes. ACS Appl. Mater. Interfaces, 13 (10) 12268–12277. https://doi.org/10.1021/acsami.0c22456
  • Liu, R., Wang, Z.L., Fukuda, K., Someya, T., (2022). Flexible self-charging power sources. Nat. Rev. Mater., 1–17.
  • Liu, W., Song, M.S., Kong, B., Cui, Y.,(2017). Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater., 29 (1), 1603436. https://doi.org/10.1002/adma.201603436
  • Ludwing et al., (2024). Terahertz Detection with Graphene FETs: Photothermoelectric and Resistive Self-Mixing Contributions to the Detector Response. ACS Appl. Electron. Mater., 6, 4, 2197–2212. https://doi.org/10.1021/acsaelm.3c01511
  • Ma, R., Zhou, Y., Bi, H., Yang, M., Wang, J., Liu, Q, et al. (2020). Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog Mater Sci., 113,100665. https://doi.org/10.1016/j.pmatsci.2020.100665
  • Mak, K. F., Sfeir, M. Y., Misewich, J. A., Heinz, T.F., (2009). Electronic Structure of Few-Layer Graphene: Experimental Demonstration of Strong Dependence on Stacking Sequence. Phys. Rev. Lett., 104, 176404. http://dx.doi.org/10.1103/PhysRevLett.104.176404
  • Mbayachi, V., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E., Khan, A., (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163
  • Minami, T., (2005). Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 20, S35–S44.
  • Mohebbi, E., Pavoni, E., Pierantoni, L., Stipa, P., Hemmetter, A., Laudadio, E., and Mencarelli, D., (2024). Towards graphene-based asymmetric diodes: a density functional tight-binding study. | Nanoscale Adv., 6, 1548-1555. https://doi.org/10.1039/D3NA00603D
  • Na, Y.W., Cheon, J.Y., Kim, J.H., Jung, Y., Lee, K., Park, J.S., Park, J.Y., Song, K.S., Lee, S.B., Kim, T., (2022). All-in-one flexible supercapacitor with ultrastable performance under extreme load. Sci. Adv., 8 (1), eabl8631. https://doi.org/10.1126/sciadv.abl8631
  • Nair, M., Mishra, S., Dahiya, R., (2023). Graphene-Based Touch Sensors. Encyclopedia of Materials: Electronics, 3,54-70. https://doi.org/10.1016/B978-0-12-819728-8.00122-4
  • Nair, R. R., et al (2008). Fine structure constant defines visual transparency of graphene. Science 320, 1308. https://doi.org/10.1126/science.1156965
  • Neto, AHC., Novoselov KS., (2011). New directions in science and technology: twodimensional crystals. Rep Prog Phys., 74:082501. http://dx.doi.org/10.1088/0034-4885/74/8/082501
  • Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., Sayed, E.T., (2021). Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 135, 110026. https://doi.org/10.1016/j.rser.2020.110026
  • Patil, J.J., Chae, W.H., Trebach, A., Carter, K.J., Lee, E., Sannicolo, T., Grossman, J.C., (2021). Failing forward: stability of transparent electrodes based on metal nanowire networks. Adv. Mater., 33 (5), 2004356. https://doi.org/10.1002/adma.202004356
  • Perala, R., , Chandrasekar, N., Balaji, R., Alexander, P., Humaidi , N., Hwang, M., (2024). A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications. Materials Science and Engineering: R, Volume 159, 100805. https://doi.org/10.1016/j.mser.2024.100805
  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., Gogotsi, Y., (2019). Energy storage: the future enabled by nanomaterials. Science, 366 (6468) eaan8285. https://doi.org/10.1126/science.aan8285
  • Sanz, S., et al. (2020). Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Physical Review Letters,124, (171), 177201. https://doi.org/10.1103/PhysRevLett.124.177201
  • Sarma SD., Adam S., Hwang EH., Rossi E., (2011). Electronic transport in two-dimensional graphene. Rev Mod Phys., 83:407–470. https://doi.org/10.1103/RevModPhys.83.407
  • Seekaew, Y., Arayawut, O., Timsorn, K., Wongchoosuk, C., (2019). Chapter Nine - Synthesis, Characterization, and Applications of Graphene and Derivatives. Carbon-Based Nanofillers and their Rubber Nanocomposites, Elsevier, pp. 259–283. https://doi.org/10.1016/B978-0-12-813248-7.00009-2
  • Shams, S., Zhang, R., and Zhu, J., (2015). Graphene synthesis: a Review. Materials Science-Poland, 33(3), pp. 566-578. https://doi.org/10.1515/msp-2015-0079
  • Shinohara, H., Tiwari, A., (2015). Graphene: an introduction to the fundamentals and industrial applications. John Wiley & Sons.
  • Siow, L., Lee, J., Ooi, E., and Lau, E., (2024). Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review. Renewable and Sustainable Energy Reviews, 193(3-4), 114288. https://doi.org/10.1016/j.rser.2024.114288
  • Sua, H., and , Hu, Y.H., (2023). 3D graphene: synthesis, properties, and solar cell applications. Chemical Communications, 59(44),6660-6673. https://doi.org/10.1039/d3cc01004j
  • Trivedi, S., Lobo, K., and Matte, H.R., (2019). Synthesis, Properties, and Applications of Graphene. Fundamentals and Sensing Applications of 2D Materials, Elsevier, pp. 25–90. https://doi.org/10.1016/B978-0-08-102577-2.00003-8
  • Velasco-Soto, M.A., Pérez-García, S.A., Alvarez-Quintana, J., Cao. Y., Nyborg L., Licea-Jiménez, L., (2015). Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon, 93,967-973. https://doi.org/10.1016/j.carbon.2015.06.013
  • Vicarelli, L. et al., (2012). Graphene field-effect transistors as room-temperature terahertz detectors. 2012. 11(10): p. 865-871.
  • Wallace P. R., (1947). The Band Theory of Graphite. Phys. Rev. 71, 622. https://doi.org/10.1103/PhysRev.71.622
  • Wang, S., Liang, L., Chen, S., (2024). Tensile strength and toughness of carbon nanotube-graphene foam composite materials and the corresponding microscopic influence mechanism. Materials & Design, 237,112529. https://doi.org/10.1016/j.matdes.2023.112529
  • Wang, X., Shi, G., (2015). Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci., 8 (3),790–823.
  • Wu, Y. et al., (2011). High-frequency, scaled graphene transistors on diamond-like. Carbon, 472(7341): p. 74-78.
  • Yang, G., Li, L., Lee, W.B., and Man Cheung Ng, (2018). Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater., 19(1): p. 613-648. https://doi.org/10.1080/14686996.2018.1494493
  • Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S.W., Cui, Y., (2011). Transparent lithium-ion batteries. Proc. Natl. Acad. Sci., USA 108 (32), 13013–13018. https://doi.org/10.1073/pnas.1102873108
  • Zhang, F., Yang, K., Liu, G., Chen, Y., Wang, M., Li, S., (2022). Recent advances on graphene: Synthesis, properties and applications. Composites Part A, 160,107051. https://doi.org/10.1016/j.compositesa.2022.107051
  • Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823.
  • Zhao, W., Jiang, M., Wang, W., Liu, S., Huang, W., Zhao, Q., (2021). Flexible transparent supercapacitors: materials and devices. Adv. Funct. Mater., 31 (11), 2009136. https://doi.org/10.1002/adfm.202009136
  • Zhao, Y., Liu, H., Yan, Y., Chen, T., Yu, H., Ejeta, L.O., Zhang, G., Duan, H., (2022). Flexible transparent electrochemical energy conversion and storage: from electrode structures to integrated applications. Energy & Environ. Mater., 6,12303. https://doi.org/10.1002/eem2.12303
  • Zurutuza, A., Marinelli, C., (2014). Challenges and opportunities in graphene commercialization. Nat. Nanotechnol, 9 (10) 730–734.
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Photonic and Electro-Optical Devices, Sensors and Systems (Excl. Communications)
Journal Section Reviews
Authors

Pınar Köç Bakacak 0000-0002-9635-3921

Aytaç Levet 0000-0002-1086-5732

Publication Date June 23, 2024
Submission Date June 10, 2024
Acceptance Date June 23, 2024
Published in Issue Year 2024

Cite

APA Köç Bakacak, P., & Levet, A. (2024). Optoelektronik Uygulamalar için Grafen. Journal of Marine and Engineering Technology, 4(1), 30-43. https://doi.org/10.58771/joinmet.1498953