Research Article
BibTex RIS Cite

Kılavuz Kaptan Transfer Operasyonları Sırasındaki Risklere Yönelik Önleyici Stratejiler: Uzman Tabanlı Risk Kriterleriyle Bulanık Analitik Bir Yaklaşım

Year 2025, Volume: 5 Issue: 1, 50 - 60, 25.06.2025
https://doi.org/10.58771/joinmet.1694060

Abstract

Bu çalışmada, kılavuz kaptan transfer operasyonlarında karşılaşılan risklerin değerlendirilmesi amacıyla bulanık Analitik Hiyerarşi Süreci (AHS) yöntemi kullanılmıştır. Alanında uzman 19 denizcilik profesyonelinin katılımıyla gerçekleştirilen değerlendirmeler sonucunda dört kritik tehlike öne çıkmıştır: kılavuz kaptanın çarmıhtan düşmesi (Cr1, 0.20077), kılavuz botunun çarmıha dolanarak yerinden kaydırması (Cr12, 0.17512), gemi ile bot arasında sıkışma (Cr11, 0.14466) ve çarmıha uzuv sıkışması (Cr7, 0.11002). Bu dört unsur, toplam risk ağırlığının %60’ından fazlasını oluşturarak, transfer operasyonlarındaki mekanik ve insan kaynaklı tehlikelerin önemini ortaya koymaktadır. Bulanık AHS yaklaşımı, uzman yargılarındaki belirsizlikleri etkin biçimde ele alarak risklerin nicel olarak analiz edilmesine olanak sağlamıştır. Elde edilen bulgular, emniyeti artırmaya yönelik hedefe yönelik önlemlerin gerekliliğini vurgulamaktadır. Bu bağlamda; düşmelere karşı akıllı çarmıh sistemlerinin geliştirilmesi, bot personeline yönelik ileri düzey manevra eğitimi verilmesi, standart mesafe protokollerinin uygulanması ve ergonomik çarmıh tasarımlarının benimsenmesi önerilmektedir. Bu çalışma, kılavuz kaptan transfer emniyetini artırmaya yönelik müdahalelerin önceliklendirilmesinde kullanılabilecek veri temelli bir çerçeve sunmakta olup, denizcilik sektöründeki uygulayıcılar ve düzenleyici kurumlar için pratik çıkarımlar sağlamaktadır.

References

  • Akyuz, E., & Celik, M. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.002
  • Akyüz, E. (2017). A hybrid accident analysis method to assess potential navigational contingencies: The case of ship grounding. Ocean Engineering, 129, 282-290. https://doi.org/10.1016/j.oceaneng.2016.11.014
  • Akyüz, E., Celik, E., & Cebi, S. (2018). A novel approach to safety assessment in ship-to-ship transfer operations. Ocean Engineering, 158, 437-448. https://doi.org/10.1016/j.oceaneng.2018.04.001
  • Bozbura, F. T., Beskese, A., & Kahraman, C. (2007). Prioritization of human capital measurement indicators using fuzzy AHP. Expert Systems with Applications, 32(4), 1100-1112. https://doi.org/10.1016/j.eswa.2006.02.006
  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
  • Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j.eswa.2011.08.061
  • Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., & Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Safety Science, 51(1), 198-206. https://doi.org/10.1016/j.ssci.2012.06.002
  • Celik, M., Cebi, S., Kahraman, C., & Er, I. D. (2009). Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. Expert Systems with Applications, 36(3), 4541-4557. https://doi.org/10.1016/j.eswa.2008.05.037
  • Dikmen, I., Birgonul, M. T., & Han, S. (2007). Using fuzzy risk assessment to rate cost overrun risk in international construction projects. International Journal of Project Management, 25(5), 494-505. https://doi.org/10.1016/j.ijproman.2006.12.002
  • Erensal, Y. C., Öncan, T., & Demircan, M. L. (2006). Determining key capabilities in technology management using fuzzy analytic hierarchy process: A case study of Turkey. Information Sciences, 176(18), 2755-2770. https://doi.org/10.1016/j.ins.2005.11.004
  • Hetherington, C., Flin, R., & Mearns, K. (2006). Safety in shipping: The human element. Journal of Safety Research, 37(4), 401-411. https://doi.org/10.1016/j.jsr.2006.04.007
  • International Association of Marine Aids to Navigation and Lighthouse Authorities. (2018). “Recommendation O-117 on pilot transfer arrangements”. IALA.
  • International Chamber of Shipping. (2020). Bridge procedures guide (5th ed.). Witherby Seamanship International.
  • International Maritime Organization. (2011). Resolution A.1045(27): Pilot transfer arrangements. IMO.
  • International Maritime Organization. (2012). Revised recommendations for pilot transfer arrangements (MSC.1/Circ.1428). IMO
  • International Maritime Organization. (2012). Guidelines for construction, installation, maintenance, and inspection of embarkation arrangements (MSC.1/Circ.1428). IMO.
  • International Maritime Organization. (2016). Recommendations for training and certification of pilots (MSC.1/Circ.1498). IMO.
  • International Maritime Organization. (2020). International Convention for the Safety of Life at Sea (SOLAS) (2020 ed.). IMO.
  • International Maritime Organization. (2020). Guidelines on fatigue. IMO.
  • International Maritime Organization. (2020). International Safety Management Code. IMO.
  • International Maritime Organization. (2021). International Safety Management (ISM) Code. IMO.
  • International Maritime Pilots' Association. (2019). Safety recommendations for pilot ladder operations. IMPA.
  • International Organization for Standardization. (2018). ISO 31000:2018 Risk management guidelines. ISO.
  • Kahraman, C., Cebeci, U., & Ruan, D. (2003). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171-184. https://doi.org/10.1016/S0925-5273(03)00099-9
  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall.
  • Lützhöft, M., Dekker, S. W. A., & Nyce, D. (2011). The social construction of maritime safety regulations. Safety Science, 49(2), 331-337. https://doi.org/10.1016/j.ssci.2010.09.002
  • Lützhöft, M., & Nyce, D. (2012). Technology and maritime safety: A qualitative study of policy and practice. WMU Journal of Maritime Affairs, 11(2), 209-224. https://doi.org/10.1007/s13437-012-0031-4
  • Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33. https://doi.org/10.1016/j.asoc.2004.04.001
  • Oil Companies International Marine Forum. (2021). Ship inspection report programme (7th ed.). OCIMF.
  • Oil Companies International Marine Forum. (2022). Ship Inspection Report Programme (SIRE 7.0). OCIMF.
  • Oil Companies International Marine Forum. (2022). Ship Inspection Report Programme (SIRE 7.0). OCIMF.
  • Oltedal, H., & McArthur, D. P. (2011). Reporting practices in merchant shipping and the identification of influencing factors. Safety Science, 49(2), 331-337. https://doi.org/10.1016/j.ssci.2010.09.002
  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
  • Sandhaland, H., Oltedal, H., & Eid, J. (2015). Situation awareness in bridge operations: A study of collision avoidance. Reliability Engineering & System Safety, 141, 142-152. https://doi.org/10.1016/j.ress.2015.03.021
  • Smith, A., Allen, P., & Wadsworth, E. (2018). Seafarer fatigue: The Cardiff Research Programme. Maritime Policy & Management, 45(1), 31-45. https://doi.org/10.1080/03088839.2017.1309471
  • Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: Methods and applications. Springer. https://doi.org/10.1007/978-3-642-48318-9
  • Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. https://doi.org/10.1016/S0165-0114(83)80082-7
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhang, J., Teixeira, Â. P., Soares, C. G., Yan, X., & Liu, K. (2020). Maritime transportation risk assessment of Tianjin Port with Bayesian belief networks. Applied Ocean Research, 94, 101999. https://doi.org/10.1016/j.apor.2019.101999

Preventive Strategies for Risks During Pilot Transfer Operations: A Fuzzy Analytical Approach with Expert-Driven Risk Criteria

Year 2025, Volume: 5 Issue: 1, 50 - 60, 25.06.2025
https://doi.org/10.58771/joinmet.1694060

Abstract

This study employed fuzzy AHP methodology to assess risks in pilot transfer operations, identifying four critical hazards through expert evaluations with 19 maritime professionals. The highest risks include: pilot falls from ladder (Cr1, 0.20077), pilot boat entanglement displacing ladder (Cr12, 0.17512), compression between ship and boat (Cr11, 0.14466), and limb entrapment in ladder (Cr7, 0.11002). These factors collectively represent over 60% of total risk weight, highlighting mechanical and human-factor dangers in transfer operations. The fuzzy AHP approach effectively quantifies expert judgments, addressing uncertainties in risk assessment. Findings emphasize the need for targeted safety measures: smart ladder systems with fall prevention, enhanced boat handling training, standardized distance protocols, and ergonomic ladder designs. This research provides a data-driven framework for prioritizing interventions to improve pilot transfer safety, offering practical insights for maritime operators and regulators to reduce accidents during this high risk operation.

Thanks

This study has been derived from the master's thesis titled "Analysis of Preventive Strategies for Risks During Pilot Transfer Operations" submitted to the Department of Maritime Transportation Engineering, Institute of Science, Kocaeli University.

References

  • Akyuz, E., & Celik, M. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.002
  • Akyüz, E. (2017). A hybrid accident analysis method to assess potential navigational contingencies: The case of ship grounding. Ocean Engineering, 129, 282-290. https://doi.org/10.1016/j.oceaneng.2016.11.014
  • Akyüz, E., Celik, E., & Cebi, S. (2018). A novel approach to safety assessment in ship-to-ship transfer operations. Ocean Engineering, 158, 437-448. https://doi.org/10.1016/j.oceaneng.2018.04.001
  • Bozbura, F. T., Beskese, A., & Kahraman, C. (2007). Prioritization of human capital measurement indicators using fuzzy AHP. Expert Systems with Applications, 32(4), 1100-1112. https://doi.org/10.1016/j.eswa.2006.02.006
  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
  • Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j.eswa.2011.08.061
  • Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., & Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Safety Science, 51(1), 198-206. https://doi.org/10.1016/j.ssci.2012.06.002
  • Celik, M., Cebi, S., Kahraman, C., & Er, I. D. (2009). Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. Expert Systems with Applications, 36(3), 4541-4557. https://doi.org/10.1016/j.eswa.2008.05.037
  • Dikmen, I., Birgonul, M. T., & Han, S. (2007). Using fuzzy risk assessment to rate cost overrun risk in international construction projects. International Journal of Project Management, 25(5), 494-505. https://doi.org/10.1016/j.ijproman.2006.12.002
  • Erensal, Y. C., Öncan, T., & Demircan, M. L. (2006). Determining key capabilities in technology management using fuzzy analytic hierarchy process: A case study of Turkey. Information Sciences, 176(18), 2755-2770. https://doi.org/10.1016/j.ins.2005.11.004
  • Hetherington, C., Flin, R., & Mearns, K. (2006). Safety in shipping: The human element. Journal of Safety Research, 37(4), 401-411. https://doi.org/10.1016/j.jsr.2006.04.007
  • International Association of Marine Aids to Navigation and Lighthouse Authorities. (2018). “Recommendation O-117 on pilot transfer arrangements”. IALA.
  • International Chamber of Shipping. (2020). Bridge procedures guide (5th ed.). Witherby Seamanship International.
  • International Maritime Organization. (2011). Resolution A.1045(27): Pilot transfer arrangements. IMO.
  • International Maritime Organization. (2012). Revised recommendations for pilot transfer arrangements (MSC.1/Circ.1428). IMO
  • International Maritime Organization. (2012). Guidelines for construction, installation, maintenance, and inspection of embarkation arrangements (MSC.1/Circ.1428). IMO.
  • International Maritime Organization. (2016). Recommendations for training and certification of pilots (MSC.1/Circ.1498). IMO.
  • International Maritime Organization. (2020). International Convention for the Safety of Life at Sea (SOLAS) (2020 ed.). IMO.
  • International Maritime Organization. (2020). Guidelines on fatigue. IMO.
  • International Maritime Organization. (2020). International Safety Management Code. IMO.
  • International Maritime Organization. (2021). International Safety Management (ISM) Code. IMO.
  • International Maritime Pilots' Association. (2019). Safety recommendations for pilot ladder operations. IMPA.
  • International Organization for Standardization. (2018). ISO 31000:2018 Risk management guidelines. ISO.
  • Kahraman, C., Cebeci, U., & Ruan, D. (2003). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171-184. https://doi.org/10.1016/S0925-5273(03)00099-9
  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall.
  • Lützhöft, M., Dekker, S. W. A., & Nyce, D. (2011). The social construction of maritime safety regulations. Safety Science, 49(2), 331-337. https://doi.org/10.1016/j.ssci.2010.09.002
  • Lützhöft, M., & Nyce, D. (2012). Technology and maritime safety: A qualitative study of policy and practice. WMU Journal of Maritime Affairs, 11(2), 209-224. https://doi.org/10.1007/s13437-012-0031-4
  • Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33. https://doi.org/10.1016/j.asoc.2004.04.001
  • Oil Companies International Marine Forum. (2021). Ship inspection report programme (7th ed.). OCIMF.
  • Oil Companies International Marine Forum. (2022). Ship Inspection Report Programme (SIRE 7.0). OCIMF.
  • Oil Companies International Marine Forum. (2022). Ship Inspection Report Programme (SIRE 7.0). OCIMF.
  • Oltedal, H., & McArthur, D. P. (2011). Reporting practices in merchant shipping and the identification of influencing factors. Safety Science, 49(2), 331-337. https://doi.org/10.1016/j.ssci.2010.09.002
  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
  • Sandhaland, H., Oltedal, H., & Eid, J. (2015). Situation awareness in bridge operations: A study of collision avoidance. Reliability Engineering & System Safety, 141, 142-152. https://doi.org/10.1016/j.ress.2015.03.021
  • Smith, A., Allen, P., & Wadsworth, E. (2018). Seafarer fatigue: The Cardiff Research Programme. Maritime Policy & Management, 45(1), 31-45. https://doi.org/10.1080/03088839.2017.1309471
  • Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: Methods and applications. Springer. https://doi.org/10.1007/978-3-642-48318-9
  • Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. https://doi.org/10.1016/S0165-0114(83)80082-7
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhang, J., Teixeira, Â. P., Soares, C. G., Yan, X., & Liu, K. (2020). Maritime transportation risk assessment of Tianjin Port with Bayesian belief networks. Applied Ocean Research, 94, 101999. https://doi.org/10.1016/j.apor.2019.101999
There are 40 citations in total.

Details

Primary Language English
Subjects Maritime Transportation Engineering, Ship Management
Journal Section Research Article
Authors

Mehmet Doğru 0000-0002-5492-639X

Umur Bucak 0000-0001-5112-8133

Submission Date May 7, 2025
Acceptance Date June 2, 2025
Publication Date June 25, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Doğru, M., & Bucak, U. (2025). Preventive Strategies for Risks During Pilot Transfer Operations: A Fuzzy Analytical Approach with Expert-Driven Risk Criteria. Journal of Marine and Engineering Technology, 5(1), 50-60. https://doi.org/10.58771/joinmet.1694060