EFFECT OF NANOSILVER SYNTHESIS ON SURFACE OF NICKEL COATED UHMWPE PARTICLES ON ELECTROMAGNETIC SHIELDING
Year 2023,
, 48 - 60, 24.06.2023
Ayşe Betül Demir
,
Gözde Çelebi Efe
,
Şuayb Çağrı Yener
,
Cuma Bindal
Abstract
In order to develop electromagnetic radiation shielding material, UHMWPE (Ultra High Molecular Weight Polyethylene) surfaces were coated with Nickel by electroless coating method and Ag nanoparticle synthesis was made on it. SEM-EDS analyzes were carried out in order to detect the nickel plating and nanosilver additive and to observe its distribution in the composite matrix. The dominant phases Ni and NanoAg in UHMWPE were determined by XRD analysis. The obtained powders were subjected to hot pressing at 180 °C for 15 minutes and Ni coated and nanosilver added UHMWPE composites were obtained. EMI-SE (Electromagnetic Interference Shielding Effectiveness) measurement was performed on Ni coated and NanoAg doped UHMWPE particles to determine their shielding values. The obtained shielding values were determined as 56 dB for Ni coating and 34 dB for NanoAg additive. When the results for both X and Ku bands were compared, it was observed how NanoAg synthesis on Ni coated UHMWPE particles affected the shielding values.
References
- [1]M. Altun, İ. Karteri, M. Güneş, and M. H. Alma, “Comparative Study of Electromagnetic Properties and Electromagnetic Shielding Effectiveness of Graphene Based Wood-Plastic Nanocomposites,” 2017.
- [2] D. D. L. Chung, “Materials for electromagnetic interference shielding,” Mater Chem Phys, vol. 255, p. 123587, Nov. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123587.
- [3] X. Ouyang, W. Huang, E. Cabrera, J. Castro, and L. J. Lee, “Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties,” AIP Adv, vol. 5, no. 1, p. 017135, Jan. 2015, doi: 10.1063/1.4906795.
- [4] D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” 2001.
- [5] H. Duan, Y. Xu, D. X. Yan, Y. Yang, G. Zhao, and Y. Liu, “Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding,” Mater Lett, vol. 209, pp. 353–356, Dec. 2017, doi: 10.1016/J.MATLET.2017.08.053.
- [6] S. Lu et al., “Electromagnetic interference shielding properties of graphene/MWCNT hybrid buckypaper,” Micro Nano Lett, vol. 13, no. 9, pp. 1252–1254, 2018, doi: 10.1049/mnl.2018.5066.
- [7] G. Kılıç , H. G. Örtlek ve Ö. G. Saraçoğlu , "Elektromanyetik Radyasyona Karşi Koruyucu Tekstillerin Ekranlama Etkinliği (SE) Ölçüm Yöntemleri", Tekstil ve Mühendis, c. 15, sayı. 72, ss. , Eyl. 2008
- [8] R. B. Schulz, V. C. Plantz, and D. R. Brush, “Shielding Theory and Practice,” IEEE Trans Electromagn Compat, vol. 30, no. 3, pp. 187–201, 1988, doi: 10.1109/15.3297.
- [9] C. L. Holloway, D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, “Shielding effectiveness measurements of materials using nested reverberation chambers,” IEEE Trans Electromagn Compat, vol. 45, no. 2, pp. 350–356, May 2003, doi: 10.1109/TEMC.2003.809117.
- [10] P. F. Wilson, M. T. Ma, and J. W. Adams, “Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part I:—Far-Field Source Simulation,” IEEE Trans Electromagn Compat, vol. 30, no. 3, pp. 239–250, 1988, doi: 10.1109/15.3302.
- [11] Ö. SÖĞÜT, E. A. DOĞAN, and U. HASAR, “Investigation of the Absorption and Reflection Capacities of Some Silver Doped Textile Products,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 15, no. 1, pp. 125–134, Mar. 2022, doi: 10.18185/erzifbed.993770.
- [12] L. Vovchenko, L. Matzui, V. Oliynyk, V. Launets, Ye. Mamunya, and O. Maruzhenko, “Nanocarbon/polyethylene composites with segregated conductive network for electromagnetic interference shielding,” Molecular Crystals and Liquid Crystals, vol. 672, no. 1, pp. 186–198, Sep. 2018, doi: 10.1080/15421406.2018.1555349.
- [13] Y. Wang et al., “Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding,” Nanoscale, vol. 9, no. 46, pp. 18318–18325, Dec. 2017, doi: 10.1039/c7nr05951e.
- [14] C. hua Cui et al., “Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks,” Chinese Journal of Polymer Science (English Edition), vol. 34, no. 12, pp. 1490–1499, Dec. 2016, doi: 10.1007/s10118-016-1849-6.
- [15] X. Fan et al., “Highly expansive, thermally insulating epoxy/Ag nanosheet composite foam for electromagnetic interference shielding,” Chemical Engineering Journal, vol. 372, pp. 191–202, Sep. 2019, doi: 10.1016/j.cej.2019.04.069.
- [16] Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Advanced Materials, vol. 25, no. 9, pp. 1296–1300, Mar. 2013, doi: 10.1002/adma.201204196.
- [17] X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo, and C. Kan, “Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires,” Nanoscale, vol. 12, no. 27, pp. 14589–14597, Jul. 2020, doi: 10.1039/d0nr03790g.
- [18] A. Sheng et al., “Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 15, pp. 14669–14678, Aug. 2019, doi: 10.1007/s10854-019-01838-4.
- [19] B. Y. Wen, X. J. Wang, and Y. Zhang, “Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance,” Compos Sci Technol, vol. 169, pp. 127–134, Jan. 2019, doi: 10.1016/j.compscitech.2018.11.013.
- [20] Y. Li et al., “Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites,” Compos Part A Appl Sci Manuf, vol. 119, pp. 101–110, Apr. 2019, doi: 10.1016/j.compositesa.2019.01.025.
NİKEL KAPLI UHMWPE PARTİKÜLLERİ YÜZEYİNE NANOGÜMÜŞ SENTEZİNİN ELEKTROMANYETİK EKRANLAMA ÜZERİNE ETKİSİ
Year 2023,
, 48 - 60, 24.06.2023
Ayşe Betül Demir
,
Gözde Çelebi Efe
,
Şuayb Çağrı Yener
,
Cuma Bindal
Abstract
Elektromanyetik radyasyon koruyucu malzeme geliştirmek amacıyla UHMWPE (Ultra High Molecular Weight Polyethylene) yüzeyleri akımsız kaplama yöntemiyle Nikel ile kaplanmış ve üzerine Ag nanopartikül sentezi yapılmıştır. Nikel kaplama ve nanogümüş katkısının tespiti ve kompozit matris içerisinde dağılımını gözlemlemek amacıyla SEM-EDS analizleri gerçekleştirilmiştir. UHMWPE içerisindeki hakim fazlar Ni ve NanoAg, XRD analizi ile tespit edilmiştir. Elde edilen tozlar 180 °C’de 15 dk süresince sıcak preslemeye tabi tutularak Ni kaplı ve nanogümüş katkılı UHMWPE kompozitleri elde edilmiştir. Ni kaplı ve NanoAg katkılı UHMWPE partiküllerine, ekranlama değerlerinin belirlenmesi için EMI-SE (Elektromagnetic Interference Shielding Effectiveness) ölçümü yapılmıştır. Elde edilen ekranlama değerleri Ni kaplama için 56 dB, NanoAg katkısı için 34 dB olarak belirlenmiştir. Hem X hem de Ku-bandı için sonuçlar karşılaştırıldıklarında Ni kaplı UHMWPE partikülleri üzerine NanoAg sentezinin ekranlama değerlerini nasıl etkilediği gözlemlenmiştir.
References
- [1]M. Altun, İ. Karteri, M. Güneş, and M. H. Alma, “Comparative Study of Electromagnetic Properties and Electromagnetic Shielding Effectiveness of Graphene Based Wood-Plastic Nanocomposites,” 2017.
- [2] D. D. L. Chung, “Materials for electromagnetic interference shielding,” Mater Chem Phys, vol. 255, p. 123587, Nov. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123587.
- [3] X. Ouyang, W. Huang, E. Cabrera, J. Castro, and L. J. Lee, “Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties,” AIP Adv, vol. 5, no. 1, p. 017135, Jan. 2015, doi: 10.1063/1.4906795.
- [4] D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” 2001.
- [5] H. Duan, Y. Xu, D. X. Yan, Y. Yang, G. Zhao, and Y. Liu, “Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding,” Mater Lett, vol. 209, pp. 353–356, Dec. 2017, doi: 10.1016/J.MATLET.2017.08.053.
- [6] S. Lu et al., “Electromagnetic interference shielding properties of graphene/MWCNT hybrid buckypaper,” Micro Nano Lett, vol. 13, no. 9, pp. 1252–1254, 2018, doi: 10.1049/mnl.2018.5066.
- [7] G. Kılıç , H. G. Örtlek ve Ö. G. Saraçoğlu , "Elektromanyetik Radyasyona Karşi Koruyucu Tekstillerin Ekranlama Etkinliği (SE) Ölçüm Yöntemleri", Tekstil ve Mühendis, c. 15, sayı. 72, ss. , Eyl. 2008
- [8] R. B. Schulz, V. C. Plantz, and D. R. Brush, “Shielding Theory and Practice,” IEEE Trans Electromagn Compat, vol. 30, no. 3, pp. 187–201, 1988, doi: 10.1109/15.3297.
- [9] C. L. Holloway, D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, “Shielding effectiveness measurements of materials using nested reverberation chambers,” IEEE Trans Electromagn Compat, vol. 45, no. 2, pp. 350–356, May 2003, doi: 10.1109/TEMC.2003.809117.
- [10] P. F. Wilson, M. T. Ma, and J. W. Adams, “Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part I:—Far-Field Source Simulation,” IEEE Trans Electromagn Compat, vol. 30, no. 3, pp. 239–250, 1988, doi: 10.1109/15.3302.
- [11] Ö. SÖĞÜT, E. A. DOĞAN, and U. HASAR, “Investigation of the Absorption and Reflection Capacities of Some Silver Doped Textile Products,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 15, no. 1, pp. 125–134, Mar. 2022, doi: 10.18185/erzifbed.993770.
- [12] L. Vovchenko, L. Matzui, V. Oliynyk, V. Launets, Ye. Mamunya, and O. Maruzhenko, “Nanocarbon/polyethylene composites with segregated conductive network for electromagnetic interference shielding,” Molecular Crystals and Liquid Crystals, vol. 672, no. 1, pp. 186–198, Sep. 2018, doi: 10.1080/15421406.2018.1555349.
- [13] Y. Wang et al., “Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding,” Nanoscale, vol. 9, no. 46, pp. 18318–18325, Dec. 2017, doi: 10.1039/c7nr05951e.
- [14] C. hua Cui et al., “Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks,” Chinese Journal of Polymer Science (English Edition), vol. 34, no. 12, pp. 1490–1499, Dec. 2016, doi: 10.1007/s10118-016-1849-6.
- [15] X. Fan et al., “Highly expansive, thermally insulating epoxy/Ag nanosheet composite foam for electromagnetic interference shielding,” Chemical Engineering Journal, vol. 372, pp. 191–202, Sep. 2019, doi: 10.1016/j.cej.2019.04.069.
- [16] Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Advanced Materials, vol. 25, no. 9, pp. 1296–1300, Mar. 2013, doi: 10.1002/adma.201204196.
- [17] X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo, and C. Kan, “Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires,” Nanoscale, vol. 12, no. 27, pp. 14589–14597, Jul. 2020, doi: 10.1039/d0nr03790g.
- [18] A. Sheng et al., “Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 15, pp. 14669–14678, Aug. 2019, doi: 10.1007/s10854-019-01838-4.
- [19] B. Y. Wen, X. J. Wang, and Y. Zhang, “Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance,” Compos Sci Technol, vol. 169, pp. 127–134, Jan. 2019, doi: 10.1016/j.compscitech.2018.11.013.
- [20] Y. Li et al., “Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites,” Compos Part A Appl Sci Manuf, vol. 119, pp. 101–110, Apr. 2019, doi: 10.1016/j.compositesa.2019.01.025.