Research Article
BibTex RIS Cite

Improved MEMS microphone frequency response through design-optimization

Year 2023, , 119 - 126, 24.12.2023
https://doi.org/10.58769/joinssr.1378619

Abstract

Microphone main characteristic is to faithfully detect and transform incoming acoustic signal in electric one. Semiconductor based capacitive MEMS microphones, despite their limited dimensions, offer remarkable performances (frequency response, SNR). The purpose of this article is to introduce some design optimizations in the current SDM (Sealed-Dual-Membrane) capacitive MEMS microphone mainly concerning the position of the ventilation hole. The effects of the suggested modifications on the microphone’s performances were evaluated using Lumped Model simulation tool. A clear improvement in the device frequency response within audio-band was obtained even if a less significant improvement in the general performances of microphone (SNR) was achieved.

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi

References

  • [1] Stephen D. Senturia. Microsystem design. Springer New York, NY. https://doi.org/10.1007/b117574
  • [2] Judy, Jack. (2001). Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Materials and Structures. 10. 1115-1134. 10.1088/0964-1726/10/6/301.
  • [3] Gad-el-Hak, Mohamed & Seemann, We. (2002). MEMS handbook. Applied Mechanics Reviews. 55. 109- . 10.1115/1.1508147.
  • [4] J H Rector et al, Optimization of the batch production of silicon fiber-top MEMS devices, 2017 J. Micromech. Microeng. 27 115005.
  • [5] Moore, J., Davis, C., Coplan, M., & Greer, S. (2009). Building Scientific Apparatus (4th ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511609794.
  • [6] V. Naderyan et al., "MEMS microphone with 73dBA SNR IN A 4mm x 3mm x 1.2mm Package," 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 2021, pp. 242-245, doi: 10.1109/Transducers50396.2021.9495414.
  • [7] L. Sant et al., "A 130dB SPL 72dB SNR MEMS Microphone Using a Sealed-Dual Membrane Transducer and a Power-Scaling Read-Out ASIC," in IEEE Sensors Journal, vol. 22, no. 8, pp. 7825-7833, 15 April15, 2022, doi: 10.1109/JSEN.2022.3154446.
  • [8] A. Dehé, M. Wurzer, M. Füldner, and U. Krumbein, “The Infineon silicon MEMS microphone,” in Proc. AMA Conf. Sensors, 2013, pp. 95–99.
  • [9] Landau, Lifshitz, Fluid Mechanics (Second Edition), Pergamon, 1987, ISBN 9780080339337, https://doi.org/10.1016/B978-0-08-033933-7.50010-6.
  • [10] S. Anzinger, C. Bretthauer, D. Tumpold and A. Dehé, "A Non-Linear Lumped Model for the Electro- Mechanical Coupling in Capacitive MEMS Microphones," in Journal of Microelectromechanical Systems, vol. 30, no. 3, pp. 360-368, June 2021, doi: 10.1109/JMEMS.2021.3065129.
  • [11] S. Anzinger, A. Fusco, D. Tumpold, C. Bretthauer and A. Dehé, "Modeling of Dual-Backplate based Airborne CMUTs with Enhanced Bandwidth," 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 2020, pp. 1-4, doi: 10.1109/IUS46767.2020.9251571.
  • [12] Lenk, Arno & Ballas, Rüdiger & Werthschützky, Roland & Pfeifer, Günther. (2011). Electromechanical Systems in Microtechnology and Mechatronics – Electrical, Mechanical and Acoustic Networks, their Interactions and Applications. 10.1007/978-3-642-10806-8.
  • [13] Shubham, Shubham & Seo, Yoonho & Naderyan, Vahid & Song, Xin & Frank, Anthony & Johnson, Jeremy & Silva, Mark & Pedersen, Michael. (2021). A Novel MEMS Capacitive Microphone with Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines. 13. 22. 10.3390/mi13010022.

Tasarım optimizasyonu ile geliştirilmiş MEMS mikrofon frekans yanıtı

Year 2023, , 119 - 126, 24.12.2023
https://doi.org/10.58769/joinssr.1378619

Abstract

Mikrofonun temel özelliği, gelen akustik sinyali sadık bir şekilde algılamak ve elektrik sinyaline dönüştürmektir. Yarı iletken tabanlı kapasitif MEMS mikrofonlar, sınırlı boyutlarına rağmen dikkate değer performanslar (frekans tepkisi, SNR) sunmaktadır. Bu makalenin amacı, mevcut SDM (Sealed-Dual-Membrane) kapasitif MEMS mikrofonunda özellikle havalandırma deliğinin konumu ile ilgili bazı tasarım optimizasyonlarını tanıtmaktır. Önerilen değişikliklerin mikrofonun performansı üzerindeki etkileri Lumped Model simülasyon aracı kullanılarak değerlendirilmiştir. Mikrofonun genel performansında (SNR) daha az önemli bir iyileşme elde edilse bile, ses bandı içinde cihaz frekans yanıtında net bir iyileşme elde edilmiştir.

Ethical Statement

Rapor içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, raporda yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir çalışmada kullanılmadığını beyan ederim.

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi

Thanks

lisans eğitimim boyunca değerli bilgi ve deneyimlerinden yararlandığım, her konuda bilgi ve desteğini almaktan çekinmediğim, araştırmanın planlanmasından yazılmasına kadar tüm aşamalarında yardımlarını esirgemeyen, teşvik eden, aynı titizlikte beni yönlendiren değerli danışman hocam Doç. Dr. Kasım SERBEST’e teşekkürlerimi sunarım.

References

  • [1] Stephen D. Senturia. Microsystem design. Springer New York, NY. https://doi.org/10.1007/b117574
  • [2] Judy, Jack. (2001). Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Materials and Structures. 10. 1115-1134. 10.1088/0964-1726/10/6/301.
  • [3] Gad-el-Hak, Mohamed & Seemann, We. (2002). MEMS handbook. Applied Mechanics Reviews. 55. 109- . 10.1115/1.1508147.
  • [4] J H Rector et al, Optimization of the batch production of silicon fiber-top MEMS devices, 2017 J. Micromech. Microeng. 27 115005.
  • [5] Moore, J., Davis, C., Coplan, M., & Greer, S. (2009). Building Scientific Apparatus (4th ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511609794.
  • [6] V. Naderyan et al., "MEMS microphone with 73dBA SNR IN A 4mm x 3mm x 1.2mm Package," 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 2021, pp. 242-245, doi: 10.1109/Transducers50396.2021.9495414.
  • [7] L. Sant et al., "A 130dB SPL 72dB SNR MEMS Microphone Using a Sealed-Dual Membrane Transducer and a Power-Scaling Read-Out ASIC," in IEEE Sensors Journal, vol. 22, no. 8, pp. 7825-7833, 15 April15, 2022, doi: 10.1109/JSEN.2022.3154446.
  • [8] A. Dehé, M. Wurzer, M. Füldner, and U. Krumbein, “The Infineon silicon MEMS microphone,” in Proc. AMA Conf. Sensors, 2013, pp. 95–99.
  • [9] Landau, Lifshitz, Fluid Mechanics (Second Edition), Pergamon, 1987, ISBN 9780080339337, https://doi.org/10.1016/B978-0-08-033933-7.50010-6.
  • [10] S. Anzinger, C. Bretthauer, D. Tumpold and A. Dehé, "A Non-Linear Lumped Model for the Electro- Mechanical Coupling in Capacitive MEMS Microphones," in Journal of Microelectromechanical Systems, vol. 30, no. 3, pp. 360-368, June 2021, doi: 10.1109/JMEMS.2021.3065129.
  • [11] S. Anzinger, A. Fusco, D. Tumpold, C. Bretthauer and A. Dehé, "Modeling of Dual-Backplate based Airborne CMUTs with Enhanced Bandwidth," 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 2020, pp. 1-4, doi: 10.1109/IUS46767.2020.9251571.
  • [12] Lenk, Arno & Ballas, Rüdiger & Werthschützky, Roland & Pfeifer, Günther. (2011). Electromechanical Systems in Microtechnology and Mechatronics – Electrical, Mechanical and Acoustic Networks, their Interactions and Applications. 10.1007/978-3-642-10806-8.
  • [13] Shubham, Shubham & Seo, Yoonho & Naderyan, Vahid & Song, Xin & Frank, Anthony & Johnson, Jeremy & Silva, Mark & Pedersen, Michael. (2021). A Novel MEMS Capacitive Microphone with Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines. 13. 22. 10.3390/mi13010022.
There are 13 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Research Articles
Authors

Neslihan Denğiz 0009-0006-8521-9280

Publication Date December 24, 2023
Submission Date October 19, 2023
Acceptance Date November 22, 2023
Published in Issue Year 2023

Cite

APA Denğiz, N. (2023). Improved MEMS microphone frequency response through design-optimization. Journal of Smart Systems Research, 4(2), 119-126. https://doi.org/10.58769/joinssr.1378619
AMA Denğiz N. Improved MEMS microphone frequency response through design-optimization. JoinSSR. December 2023;4(2):119-126. doi:10.58769/joinssr.1378619
Chicago Denğiz, Neslihan. “Improved MEMS Microphone Frequency Response through Design-Optimization”. Journal of Smart Systems Research 4, no. 2 (December 2023): 119-26. https://doi.org/10.58769/joinssr.1378619.
EndNote Denğiz N (December 1, 2023) Improved MEMS microphone frequency response through design-optimization. Journal of Smart Systems Research 4 2 119–126.
IEEE N. Denğiz, “Improved MEMS microphone frequency response through design-optimization”, JoinSSR, vol. 4, no. 2, pp. 119–126, 2023, doi: 10.58769/joinssr.1378619.
ISNAD Denğiz, Neslihan. “Improved MEMS Microphone Frequency Response through Design-Optimization”. Journal of Smart Systems Research 4/2 (December 2023), 119-126. https://doi.org/10.58769/joinssr.1378619.
JAMA Denğiz N. Improved MEMS microphone frequency response through design-optimization. JoinSSR. 2023;4:119–126.
MLA Denğiz, Neslihan. “Improved MEMS Microphone Frequency Response through Design-Optimization”. Journal of Smart Systems Research, vol. 4, no. 2, 2023, pp. 119-26, doi:10.58769/joinssr.1378619.
Vancouver Denğiz N. Improved MEMS microphone frequency response through design-optimization. JoinSSR. 2023;4(2):119-26.