Improved MEMS microphone frequency response through design-optimization
Year 2023,
, 119 - 126, 24.12.2023
Neslihan Denğiz
Abstract
Microphone main characteristic is to faithfully detect and transform incoming acoustic signal in electric one. Semiconductor based capacitive MEMS microphones, despite their limited dimensions, offer remarkable performances (frequency response, SNR). The purpose of this article is to introduce some design optimizations in the current SDM (Sealed-Dual-Membrane) capacitive MEMS microphone mainly concerning the position of the ventilation hole. The effects of the suggested modifications on the microphone’s performances were evaluated using Lumped Model simulation tool. A clear improvement in the device frequency response within audio-band was obtained even if a less significant improvement in the general performances of microphone (SNR) was achieved.
Supporting Institution
Sakarya Uygulamalı Bilimler Üniversitesi
References
- [1] Stephen D. Senturia. Microsystem design. Springer New York, NY. https://doi.org/10.1007/b117574
- [2] Judy, Jack. (2001). Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart
Materials and Structures. 10. 1115-1134. 10.1088/0964-1726/10/6/301.
- [3] Gad-el-Hak, Mohamed & Seemann, We. (2002). MEMS handbook. Applied Mechanics Reviews. 55. 109-
. 10.1115/1.1508147.
- [4] J H Rector et al, Optimization of the batch production of silicon fiber-top MEMS devices, 2017 J.
Micromech. Microeng. 27 115005.
- [5] Moore, J., Davis, C., Coplan, M., & Greer, S. (2009). Building Scientific Apparatus (4th ed.). Cambridge:
Cambridge University Press. doi:10.1017/CBO9780511609794.
- [6] V. Naderyan et al., "MEMS microphone with 73dBA SNR IN A 4mm x 3mm x 1.2mm Package," 2021
21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers),
Orlando, FL, USA, 2021, pp. 242-245, doi: 10.1109/Transducers50396.2021.9495414.
- [7] L. Sant et al., "A 130dB SPL 72dB SNR MEMS Microphone Using a Sealed-Dual Membrane Transducer
and a Power-Scaling Read-Out ASIC," in IEEE Sensors Journal, vol. 22, no. 8, pp. 7825-7833, 15 April15,
2022, doi: 10.1109/JSEN.2022.3154446.
- [8] A. Dehé, M. Wurzer, M. Füldner, and U. Krumbein, “The Infineon silicon MEMS microphone,” in Proc.
AMA Conf. Sensors, 2013, pp. 95–99.
- [9] Landau, Lifshitz, Fluid Mechanics (Second Edition), Pergamon, 1987, ISBN 9780080339337,
https://doi.org/10.1016/B978-0-08-033933-7.50010-6.
- [10] S. Anzinger, C. Bretthauer, D. Tumpold and A. Dehé, "A Non-Linear Lumped Model for the Electro-
Mechanical Coupling in Capacitive MEMS Microphones," in Journal of Microelectromechanical Systems, vol.
30, no. 3, pp. 360-368, June 2021, doi: 10.1109/JMEMS.2021.3065129.
- [11] S. Anzinger, A. Fusco, D. Tumpold, C. Bretthauer and A. Dehé, "Modeling of Dual-Backplate based
Airborne CMUTs with Enhanced Bandwidth," 2020 IEEE International Ultrasonics Symposium (IUS), Las
Vegas, NV, USA, 2020, pp. 1-4, doi: 10.1109/IUS46767.2020.9251571.
- [12] Lenk, Arno & Ballas, Rüdiger & Werthschützky, Roland & Pfeifer, Günther. (2011). Electromechanical
Systems in Microtechnology and Mechatronics – Electrical, Mechanical and Acoustic Networks, their
Interactions and Applications. 10.1007/978-3-642-10806-8.
- [13] Shubham, Shubham & Seo, Yoonho & Naderyan, Vahid & Song, Xin & Frank, Anthony & Johnson,
Jeremy & Silva, Mark & Pedersen, Michael. (2021). A Novel MEMS Capacitive Microphone with
Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines.
13. 22. 10.3390/mi13010022.
Tasarım optimizasyonu ile geliştirilmiş MEMS mikrofon frekans yanıtı
Year 2023,
, 119 - 126, 24.12.2023
Neslihan Denğiz
Abstract
Mikrofonun temel özelliği, gelen akustik sinyali sadık bir şekilde algılamak ve elektrik sinyaline dönüştürmektir. Yarı iletken tabanlı kapasitif MEMS mikrofonlar, sınırlı boyutlarına rağmen dikkate değer performanslar (frekans tepkisi, SNR) sunmaktadır. Bu makalenin amacı, mevcut SDM (Sealed-Dual-Membrane) kapasitif MEMS mikrofonunda özellikle havalandırma deliğinin konumu ile ilgili bazı tasarım optimizasyonlarını tanıtmaktır. Önerilen değişikliklerin mikrofonun performansı üzerindeki etkileri Lumped Model simülasyon aracı kullanılarak değerlendirilmiştir. Mikrofonun genel performansında (SNR) daha az önemli bir iyileşme elde edilse bile, ses bandı içinde cihaz frekans yanıtında net bir iyileşme elde edilmiştir.
Ethical Statement
Rapor içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde
edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun
şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını,
başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak
atıfta bulunulduğunu, raporda yer alan verilerin bu üniversite veya başka bir
üniversitede herhangi bir çalışmada kullanılmadığını beyan ederim.
Supporting Institution
Sakarya Uygulamalı Bilimler Üniversitesi
Thanks
lisans eğitimim boyunca değerli bilgi ve deneyimlerinden yararlandığım, her
konuda bilgi ve desteğini almaktan çekinmediğim, araştırmanın planlanmasından
yazılmasına kadar tüm aşamalarında yardımlarını esirgemeyen, teşvik eden, aynı
titizlikte beni yönlendiren değerli danışman hocam Doç. Dr. Kasım SERBEST’e
teşekkürlerimi sunarım.
References
- [1] Stephen D. Senturia. Microsystem design. Springer New York, NY. https://doi.org/10.1007/b117574
- [2] Judy, Jack. (2001). Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart
Materials and Structures. 10. 1115-1134. 10.1088/0964-1726/10/6/301.
- [3] Gad-el-Hak, Mohamed & Seemann, We. (2002). MEMS handbook. Applied Mechanics Reviews. 55. 109-
. 10.1115/1.1508147.
- [4] J H Rector et al, Optimization of the batch production of silicon fiber-top MEMS devices, 2017 J.
Micromech. Microeng. 27 115005.
- [5] Moore, J., Davis, C., Coplan, M., & Greer, S. (2009). Building Scientific Apparatus (4th ed.). Cambridge:
Cambridge University Press. doi:10.1017/CBO9780511609794.
- [6] V. Naderyan et al., "MEMS microphone with 73dBA SNR IN A 4mm x 3mm x 1.2mm Package," 2021
21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers),
Orlando, FL, USA, 2021, pp. 242-245, doi: 10.1109/Transducers50396.2021.9495414.
- [7] L. Sant et al., "A 130dB SPL 72dB SNR MEMS Microphone Using a Sealed-Dual Membrane Transducer
and a Power-Scaling Read-Out ASIC," in IEEE Sensors Journal, vol. 22, no. 8, pp. 7825-7833, 15 April15,
2022, doi: 10.1109/JSEN.2022.3154446.
- [8] A. Dehé, M. Wurzer, M. Füldner, and U. Krumbein, “The Infineon silicon MEMS microphone,” in Proc.
AMA Conf. Sensors, 2013, pp. 95–99.
- [9] Landau, Lifshitz, Fluid Mechanics (Second Edition), Pergamon, 1987, ISBN 9780080339337,
https://doi.org/10.1016/B978-0-08-033933-7.50010-6.
- [10] S. Anzinger, C. Bretthauer, D. Tumpold and A. Dehé, "A Non-Linear Lumped Model for the Electro-
Mechanical Coupling in Capacitive MEMS Microphones," in Journal of Microelectromechanical Systems, vol.
30, no. 3, pp. 360-368, June 2021, doi: 10.1109/JMEMS.2021.3065129.
- [11] S. Anzinger, A. Fusco, D. Tumpold, C. Bretthauer and A. Dehé, "Modeling of Dual-Backplate based
Airborne CMUTs with Enhanced Bandwidth," 2020 IEEE International Ultrasonics Symposium (IUS), Las
Vegas, NV, USA, 2020, pp. 1-4, doi: 10.1109/IUS46767.2020.9251571.
- [12] Lenk, Arno & Ballas, Rüdiger & Werthschützky, Roland & Pfeifer, Günther. (2011). Electromechanical
Systems in Microtechnology and Mechatronics – Electrical, Mechanical and Acoustic Networks, their
Interactions and Applications. 10.1007/978-3-642-10806-8.
- [13] Shubham, Shubham & Seo, Yoonho & Naderyan, Vahid & Song, Xin & Frank, Anthony & Johnson,
Jeremy & Silva, Mark & Pedersen, Michael. (2021). A Novel MEMS Capacitive Microphone with
Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines.
13. 22. 10.3390/mi13010022.