Advancements in Active Dynamic Orthoses: A Comprehensive Review of Hand Muscle Rehabilitation Strategies
Year 2023,
, 177 - 186, 24.12.2023
Hamid Asadi Dereshgi
,
Dilan Demir
,
Sedanur Yilmaz
,
Aya Abderrahmane
,
Belkis Abderrahmane
Abstract
In the field of rehabilitation, nuanced interventions are imperative due to the intricate anatomical complexity and versatile functionality of the human hand. From fractures and tendon injuries to neurological disorders and congenital anomalies, hand orthoses, both static and active, serve as crucial adjuncts to conventional therapeutic approaches. Active hand orthoses play a pivotal role in coordinating rehabilitation efforts, offering tailored support, dynamic control, and therapeutic facilitation. This review paper explored the scientific landscape surrounding active hand orthoses, consolidating evidence-based insights into their design, functionality, and clinical applications. The paper offered an in-depth examination of various studies, showcasing pioneering designs like hinged gloves, electro-hydraulic orthoses, and those integrating virtual reality exercises. The biomechanical principles underlying the effectiveness of active hand orthoses were emphasized, highlighting their role in optimizing outcomes across different rehabilitation scenarios. The review also covered advancements in electroencephalography (EEG)-controlled orthoses and myoelectric technology, illustrating the diverse applications for hand rehabilitation. By synthesizing current knowledge, this review established a foundation for further research and advancements in the ever-evolving field of active hand orthoses.
References
- [1] Serbest, K., Cilli, M., & Eldogan, O. (2018). A dynamic virtual hand model for estimating joint torques during the wrist and fingers movements. Journal of Engineering Science and Technology, 13(6), 1665-1676.
- [2] Serbest, K., Ateş, S., & Stienen, A. H. (2016, November). Design of an exercise glove for hand rehabilitation using spring mechanism. In 2016 20th National Biomedical Engineering Meeting (BIYOMUT) (pp. 1-5). IEEE.
- [3] Mitra, R. (2022). Principles of Rehabilitation Medicine. McGraw Hill.
- [4] Kisner, C., Colby, L. A., & Borstad, J. (2017). Therapeutic exercise: foundations and techniques. Fa Davis.
- [5] Skirven, T. M., Osterman, A. L., Fedorczyk, J., Amadio, P. C., Felder, S., & Shin, E. K. (2020). Rehabilitation of the Hand and Upper Extremity, E-Book. Elsevier Health Sciences.
- [6] Baechle, T. R., & Earle, R. W. (Eds.). (2008). Essentials of strength training and conditioning. Human kinetics.
- [7] Graves, J. E., & Franklin, B. A. (2001). Resistance training for health and rehabilitation. Human Kinetics.
- [8] Gelsomino, M. J. (2000). Therapeutic Exercise: Moving Toward Function. Physical Therapy, 80(1), 97.
- [9] Reese, N. B., & Bandy, W. D. (2016). Joint range of motion and muscle length testing-E-book. Elsevier Health Sciences.
- [10] Peck, E., Chomko, G., Gaz, D. V., & Farrell, A. M. (2014). The effects of stretching on performance. Current sports medicine reports, 13(3), 179-185.
- [11] James, S. F. M. (2001). Contractures in orthopaedic and neurological conditions: a review of causes and treatment. Disability and rehabilitation, 23(13), 549-558.
- [12] Barnes, M. P., & Good, D. C. (Eds.). (2013). Neurological rehabilitation. Newnes.
- [13] Shumway-Cook, A., & Woollacott, M. H. (2007). Motor control: translating research into clinical practice. Lippincott Williams & Wilkins.
- [14] Houglum, P. A. (2016). Therapeutic exercise for musculoskeletal injuries 4th edition. Human Kinetics.
- [15] Downey, J. A., Myers, S. J., & Gonzalez, E. G. (Eds.). (2013). The physiological basis of rehabilitation medicine. Butterworth-Heinemann.
- [16] Portney, L. G., & Watkins, M. P. (2009). Foundations of clinical research: applications to practice (Vol. 892, pp. 11-15). Upper Saddle River, NJ: Pearson/Prentice Hall.
- [17] Clarkson, H. M. (2000). Musculoskeletal assessment: joint range of motion and manual muscle strength. Lippincott Williams & Wilkins.
- [18] Wilson, F., Gormley, J., & Hussey, J. (Eds.). (2011). Exercise therapy in the management of musculoskeletal disorders. John Wiley & Sons.
- [19] Petty, N. J., & Barnard, K. (Eds.). (2017). Principles of musculoskeletal treatment and management e-book: a handbook for therapists. Elsevier Health Sciences.
- [20] Asadi Dereshgi, H., Dal, H., Demir, D., & Türe, N. F. (2021). Orthoses: A Systematic Review. Journal of Smart Systems Research, 2(2), 135-149.
- [21] Falkenstein, N., Weiss, S., & Weiss-Lessard, S. (1999). Hand rehabilitation: a quick reference guide and review. Mosby.
- [22] Serbest, K., Çilli, M., Yıldız, M. Z., & Eldoğan, O. (2017). İnme rehabilitasyonunda kullanılabilecek kablo ve yay tahrikli giyilebilir bir el bileği egzersiz cihazı tasarımı. Politeknik Dergisi, 20(4), 953-959.
- [23] Serbest, K., Ylıdız, M. Z., Çilli, M., Karayel, D., Tekeoğlu, İ., & Eldoğan, O. (2016, November). Development of a wearable exercise device for rehabilitation of hemiplegic hand. In 2016 20th National Biomedical Engineering Meeting (BIYOMUT) (pp. 1-6). IEEE.
- [24] Serbest, K. (2017). El kaslarının rehabilitasyonu için aktif dinamik el-el bileği ortezi tasarımı (Doctoral dissertation, Sakarya Universitesi (Turkey)).
- [25] Chui, K. C., Jorge, M., Yen, S. C., & Lusardi, M. M. (2019). Orthotics and Prosthetics in Rehabilitation E-Book. Elsevier Health Sciences.
- [26] Jacobs, M. A., Austin, N. M., & Austin, N. M. (2013). Orthotic intervention for the hand and upper extremity: splinting principles and process. Lippincott Williams & Wilkins.
- [27] Lederman, E. (2010). Neuromuscular rehabilitation in manual and physical therapy. Edinburgh, UK: Churchill Livingstone.
- [28] Saunders, R., Astifidis, R., Burke, S. L., Higgins, J., & McClinton, M. A. (2015). Hand and upper extremity rehabilitation: a practical guide. Elsevier Health Sciences.
- [29] Radomski, M. V., & Latham, C. A. T. (Eds.). (2008). Occupational therapy for physical dysfunction. Lippincott Williams & Wilkins.
- [30] Manske, R. C., & Magee, D. J. (2020). Orthopedic Physical Assessment-E-Book. Elsevier Health Sciences.
- [31] Du Plessis, T., Djouani, K., & Oosthuizen, C. (2021). A review of active hand exoskeletons for rehabilitation and assistance. Robotics, 10(1), 40.
- [32] Ates, S., Mora-Moreno, I., Wessels, M., & Stienen, A. H. (2015, August). Combined active wrist and hand orthosis for home use: Lessons learned. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 398-403). IEEE.
- [33] Becchi, F., Sale, P., Sieklicki, W., & Stellin, G. (2017). U.S. Patent Application No. 15/612,173.
- [34] Bos, R. A., Nizamis, K., Plettenburg, D. H., & Herder, J. L. (2018, August). Design of an electrohydraulic hand orthosis for people with Duchenne muscular dystrophy using commercially available components. In 2018
7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 305-311). IEEE.
- [35] Ghassemi, M., Ochoa, J. M., Yuan, N., Tsoupikova, D., & Kamper, D. (2018, July). Development of an integrated actuated hand orthosis and virtual reality system for home-based rehabilitation. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1689-1692). IEEE.
- [36] Kamper, D., Triandafilou, K., & Ochoa, J. (2019). U.S. Patent No. 10,478,370. Washington, DC: U.S. Patent and Trademark Office.
- [37] Gelanyi, L. (2019). U.S. Patent Application No. 16/480,380.
- [38] Abdelhafiz, M., Struijk, L. N. S. A., Dosen, S., & Spaich, E. G. (2022). U.S. Patent Application No. 17/620,337.
- [39] Toth, L., Schiffer, A., Nyitrai, M., Pentek, A., Told, R., & Maroti, P. (2020). Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Materials & Design, 195, 109029.
- [40] Muehlbauer, P., Schimbera, M., Stewart, K., & Pott, P. P. (2021, February). Twisted string actuation for an active modular hand orthosis. In ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021 (pp. 1-4). VDE.
- [41] Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., & Neuper, C. (2000). Brain oscillations control hand orthosis in a tetraplegic. Neuroscience letters, 292(3), 211-214.
- [42] Diab, M. S., Hussain, Z., & Mahmoud, S. (2016, October). Restoring function in paralyzed limbs using EEG. In 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1-4). IEEE.
- [43] Osayande, E., Ayodele, K., & Komolafe, M. (2020). Development of a robotic hand orthosis for stroke patient rehabilitation.
- [44] Kina, S., & Higa, H. (2021, November). Brain-Computer Interface System for Hand Rehabilitation. In 2021 6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (Vol. 6, pp. 47-50). IEEE.
- [45] Guger, C., & Edlinger, G. (2021). U.S. Patent No. 11,207,491. Washington, DC: U.S. Patent and Trademark Office.
- [46] Bhugra, K., & Leuthardt, E. C. (2022). U.S. Patent Application No. 17/648,384.
- [47] Ochoa, J. M., Kamper, D. G., Listenberger, M., & Lee, S. W. (2011, June). Use of an electromyographically driven hand orthosis for training after stroke. In 2011 IEEE international conference on rehabilitation robotics (pp. 1-5). IEEE.
- [48] Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., ... & Castelli, V. P. (2013, April). An emg-based robotic hand exoskeleton for bilateral training of grasp. In 2013 World Haptics Conference (WHC) (pp. 537-542). IEEE.
- [49] Bryant, M. F. (2016). U.S. Patent No. 9,387,112. Washington, DC: U.S. Patent and Trademark Office.
- [50] Dunaway, S., Dezsi, D. B., Perkins, J., Tran, D., & Naft, J. (2017). Case report on the use of a custom myoelectric elbow–wrist–hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Military medicine, 182(7), e1963-e1968.
- [51] Fardipour, S., Bahramizadeh, M., Arazpour, M., Jafarpisheh, A. S., & Azimian, M. (2018). First prototype of EMG-controlled power hand orthosis for restoring hand extension in stroke patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(12), 1176-1181.
- [52] Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315-322.
- [53] Ciocarlic, M., & Stein, J. (2019). U.S. Patent Application No. 15/766,897.
- [54] Sofie, W. O. G. E., Gustafsson, R., Renmarker, P., & Kopfer, S. K. (2022). U.S. Patent Application No. 17/296,960.
- [55] Asadi Dereshgi, H., Abderrahmane, A., Abderrahmane, B., & Demir, D. (2023, January). Development of an electroencephalography-controlled servo-motor-actuated robotic wrist – hand orthosis for home rehabilitation. In V. International Halich Congress on Multidisciplinary Scientific Research (pp. 209–209). Istanbul.
- [56] Asadi Dereshgi, H., & Yilmaz, S. (2022, December). Design and development of a novel electroencephalography-controlled linear motor-based active wrist-hand orthosis for rehabilitation application. In Anadolu 11th International Conference on Applied Sciences (pp. 54–54). Diyarbakir.
- [57] dos Santos, L. T., Kugler, M., & Nohama, P. (2023). Signals, sensors and methods for controlling active upper limb orthotic devices: a comprehensive review. Research on Biomedical Engineering, 39(3), 759-775.
- [58] DiCicco, M., Lucas, L., & Matsuoka, Y. (2004, April). Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1622-1627). IEEE.
Advancements in Active Dynamic Orthoses: A Comprehensive Review of Hand Muscle Rehabilitation Strategies
Year 2023,
, 177 - 186, 24.12.2023
Hamid Asadi Dereshgi
,
Dilan Demir
,
Sedanur Yilmaz
,
Aya Abderrahmane
,
Belkis Abderrahmane
Abstract
In the field of rehabilitation, nuanced interventions are imperative due to the intricate anatomical complexity and versatile functionality of the human hand. From fractures and tendon injuries to neurological disorders and congenital anomalies, hand orthoses, both static and active, serve as crucial adjuncts to conventional therapeutic approaches. Active hand orthoses play a pivotal role in coordinating rehabilitation efforts, offering tailored support, dynamic control, and therapeutic facilitation. This review paper explored the scientific landscape surrounding active hand orthoses, consolidating evidence-based insights into their design, functionality, and clinical applications. The paper offered an in-depth examination of various studies, showcasing pioneering designs like hinged gloves, electro-hydraulic orthoses, and those integrating virtual reality exercises. The biomechanical principles underlying the effectiveness of active hand orthoses were emphasized, highlighting their role in optimizing outcomes across different rehabilitation scenarios. The review also covered advancements in electroencephalography (EEG)-controlled orthoses and myoelectric technology, illustrating the diverse applications for hand rehabilitation. By synthesizing current knowledge, this review established a foundation for further research and advancements in the ever-evolving field of active hand orthoses.
Thanks
Special thanks to the ArelMED-I members for their motivations, recommendations and feedback.
References
- [1] Serbest, K., Cilli, M., & Eldogan, O. (2018). A dynamic virtual hand model for estimating joint torques during the wrist and fingers movements. Journal of Engineering Science and Technology, 13(6), 1665-1676.
- [2] Serbest, K., Ateş, S., & Stienen, A. H. (2016, November). Design of an exercise glove for hand rehabilitation using spring mechanism. In 2016 20th National Biomedical Engineering Meeting (BIYOMUT) (pp. 1-5). IEEE.
- [3] Mitra, R. (2022). Principles of Rehabilitation Medicine. McGraw Hill.
- [4] Kisner, C., Colby, L. A., & Borstad, J. (2017). Therapeutic exercise: foundations and techniques. Fa Davis.
- [5] Skirven, T. M., Osterman, A. L., Fedorczyk, J., Amadio, P. C., Felder, S., & Shin, E. K. (2020). Rehabilitation of the Hand and Upper Extremity, E-Book. Elsevier Health Sciences.
- [6] Baechle, T. R., & Earle, R. W. (Eds.). (2008). Essentials of strength training and conditioning. Human kinetics.
- [7] Graves, J. E., & Franklin, B. A. (2001). Resistance training for health and rehabilitation. Human Kinetics.
- [8] Gelsomino, M. J. (2000). Therapeutic Exercise: Moving Toward Function. Physical Therapy, 80(1), 97.
- [9] Reese, N. B., & Bandy, W. D. (2016). Joint range of motion and muscle length testing-E-book. Elsevier Health Sciences.
- [10] Peck, E., Chomko, G., Gaz, D. V., & Farrell, A. M. (2014). The effects of stretching on performance. Current sports medicine reports, 13(3), 179-185.
- [11] James, S. F. M. (2001). Contractures in orthopaedic and neurological conditions: a review of causes and treatment. Disability and rehabilitation, 23(13), 549-558.
- [12] Barnes, M. P., & Good, D. C. (Eds.). (2013). Neurological rehabilitation. Newnes.
- [13] Shumway-Cook, A., & Woollacott, M. H. (2007). Motor control: translating research into clinical practice. Lippincott Williams & Wilkins.
- [14] Houglum, P. A. (2016). Therapeutic exercise for musculoskeletal injuries 4th edition. Human Kinetics.
- [15] Downey, J. A., Myers, S. J., & Gonzalez, E. G. (Eds.). (2013). The physiological basis of rehabilitation medicine. Butterworth-Heinemann.
- [16] Portney, L. G., & Watkins, M. P. (2009). Foundations of clinical research: applications to practice (Vol. 892, pp. 11-15). Upper Saddle River, NJ: Pearson/Prentice Hall.
- [17] Clarkson, H. M. (2000). Musculoskeletal assessment: joint range of motion and manual muscle strength. Lippincott Williams & Wilkins.
- [18] Wilson, F., Gormley, J., & Hussey, J. (Eds.). (2011). Exercise therapy in the management of musculoskeletal disorders. John Wiley & Sons.
- [19] Petty, N. J., & Barnard, K. (Eds.). (2017). Principles of musculoskeletal treatment and management e-book: a handbook for therapists. Elsevier Health Sciences.
- [20] Asadi Dereshgi, H., Dal, H., Demir, D., & Türe, N. F. (2021). Orthoses: A Systematic Review. Journal of Smart Systems Research, 2(2), 135-149.
- [21] Falkenstein, N., Weiss, S., & Weiss-Lessard, S. (1999). Hand rehabilitation: a quick reference guide and review. Mosby.
- [22] Serbest, K., Çilli, M., Yıldız, M. Z., & Eldoğan, O. (2017). İnme rehabilitasyonunda kullanılabilecek kablo ve yay tahrikli giyilebilir bir el bileği egzersiz cihazı tasarımı. Politeknik Dergisi, 20(4), 953-959.
- [23] Serbest, K., Ylıdız, M. Z., Çilli, M., Karayel, D., Tekeoğlu, İ., & Eldoğan, O. (2016, November). Development of a wearable exercise device for rehabilitation of hemiplegic hand. In 2016 20th National Biomedical Engineering Meeting (BIYOMUT) (pp. 1-6). IEEE.
- [24] Serbest, K. (2017). El kaslarının rehabilitasyonu için aktif dinamik el-el bileği ortezi tasarımı (Doctoral dissertation, Sakarya Universitesi (Turkey)).
- [25] Chui, K. C., Jorge, M., Yen, S. C., & Lusardi, M. M. (2019). Orthotics and Prosthetics in Rehabilitation E-Book. Elsevier Health Sciences.
- [26] Jacobs, M. A., Austin, N. M., & Austin, N. M. (2013). Orthotic intervention for the hand and upper extremity: splinting principles and process. Lippincott Williams & Wilkins.
- [27] Lederman, E. (2010). Neuromuscular rehabilitation in manual and physical therapy. Edinburgh, UK: Churchill Livingstone.
- [28] Saunders, R., Astifidis, R., Burke, S. L., Higgins, J., & McClinton, M. A. (2015). Hand and upper extremity rehabilitation: a practical guide. Elsevier Health Sciences.
- [29] Radomski, M. V., & Latham, C. A. T. (Eds.). (2008). Occupational therapy for physical dysfunction. Lippincott Williams & Wilkins.
- [30] Manske, R. C., & Magee, D. J. (2020). Orthopedic Physical Assessment-E-Book. Elsevier Health Sciences.
- [31] Du Plessis, T., Djouani, K., & Oosthuizen, C. (2021). A review of active hand exoskeletons for rehabilitation and assistance. Robotics, 10(1), 40.
- [32] Ates, S., Mora-Moreno, I., Wessels, M., & Stienen, A. H. (2015, August). Combined active wrist and hand orthosis for home use: Lessons learned. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 398-403). IEEE.
- [33] Becchi, F., Sale, P., Sieklicki, W., & Stellin, G. (2017). U.S. Patent Application No. 15/612,173.
- [34] Bos, R. A., Nizamis, K., Plettenburg, D. H., & Herder, J. L. (2018, August). Design of an electrohydraulic hand orthosis for people with Duchenne muscular dystrophy using commercially available components. In 2018
7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 305-311). IEEE.
- [35] Ghassemi, M., Ochoa, J. M., Yuan, N., Tsoupikova, D., & Kamper, D. (2018, July). Development of an integrated actuated hand orthosis and virtual reality system for home-based rehabilitation. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1689-1692). IEEE.
- [36] Kamper, D., Triandafilou, K., & Ochoa, J. (2019). U.S. Patent No. 10,478,370. Washington, DC: U.S. Patent and Trademark Office.
- [37] Gelanyi, L. (2019). U.S. Patent Application No. 16/480,380.
- [38] Abdelhafiz, M., Struijk, L. N. S. A., Dosen, S., & Spaich, E. G. (2022). U.S. Patent Application No. 17/620,337.
- [39] Toth, L., Schiffer, A., Nyitrai, M., Pentek, A., Told, R., & Maroti, P. (2020). Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Materials & Design, 195, 109029.
- [40] Muehlbauer, P., Schimbera, M., Stewart, K., & Pott, P. P. (2021, February). Twisted string actuation for an active modular hand orthosis. In ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021 (pp. 1-4). VDE.
- [41] Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., & Neuper, C. (2000). Brain oscillations control hand orthosis in a tetraplegic. Neuroscience letters, 292(3), 211-214.
- [42] Diab, M. S., Hussain, Z., & Mahmoud, S. (2016, October). Restoring function in paralyzed limbs using EEG. In 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1-4). IEEE.
- [43] Osayande, E., Ayodele, K., & Komolafe, M. (2020). Development of a robotic hand orthosis for stroke patient rehabilitation.
- [44] Kina, S., & Higa, H. (2021, November). Brain-Computer Interface System for Hand Rehabilitation. In 2021 6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (Vol. 6, pp. 47-50). IEEE.
- [45] Guger, C., & Edlinger, G. (2021). U.S. Patent No. 11,207,491. Washington, DC: U.S. Patent and Trademark Office.
- [46] Bhugra, K., & Leuthardt, E. C. (2022). U.S. Patent Application No. 17/648,384.
- [47] Ochoa, J. M., Kamper, D. G., Listenberger, M., & Lee, S. W. (2011, June). Use of an electromyographically driven hand orthosis for training after stroke. In 2011 IEEE international conference on rehabilitation robotics (pp. 1-5). IEEE.
- [48] Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., ... & Castelli, V. P. (2013, April). An emg-based robotic hand exoskeleton for bilateral training of grasp. In 2013 World Haptics Conference (WHC) (pp. 537-542). IEEE.
- [49] Bryant, M. F. (2016). U.S. Patent No. 9,387,112. Washington, DC: U.S. Patent and Trademark Office.
- [50] Dunaway, S., Dezsi, D. B., Perkins, J., Tran, D., & Naft, J. (2017). Case report on the use of a custom myoelectric elbow–wrist–hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Military medicine, 182(7), e1963-e1968.
- [51] Fardipour, S., Bahramizadeh, M., Arazpour, M., Jafarpisheh, A. S., & Azimian, M. (2018). First prototype of EMG-controlled power hand orthosis for restoring hand extension in stroke patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(12), 1176-1181.
- [52] Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315-322.
- [53] Ciocarlic, M., & Stein, J. (2019). U.S. Patent Application No. 15/766,897.
- [54] Sofie, W. O. G. E., Gustafsson, R., Renmarker, P., & Kopfer, S. K. (2022). U.S. Patent Application No. 17/296,960.
- [55] Asadi Dereshgi, H., Abderrahmane, A., Abderrahmane, B., & Demir, D. (2023, January). Development of an electroencephalography-controlled servo-motor-actuated robotic wrist – hand orthosis for home rehabilitation. In V. International Halich Congress on Multidisciplinary Scientific Research (pp. 209–209). Istanbul.
- [56] Asadi Dereshgi, H., & Yilmaz, S. (2022, December). Design and development of a novel electroencephalography-controlled linear motor-based active wrist-hand orthosis for rehabilitation application. In Anadolu 11th International Conference on Applied Sciences (pp. 54–54). Diyarbakir.
- [57] dos Santos, L. T., Kugler, M., & Nohama, P. (2023). Signals, sensors and methods for controlling active upper limb orthotic devices: a comprehensive review. Research on Biomedical Engineering, 39(3), 759-775.
- [58] DiCicco, M., Lucas, L., & Matsuoka, Y. (2004, April). Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1622-1627). IEEE.