Research Article
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 1, 1 - 17, 23.06.2021

Abstract

References

  • [1]P. Patrizia, M. Giovanni, G. Rosati, S. Masiero, “Robotic technologies and rehabilitation: new tools for stroke patients therapy”, BioMed Research International. 2013. https://pubmed.ncbi.nlm.nih.gov/24350244/
  • [2]G. D. Lee, W.Wang; K. Lee, S. Chen Fu, J. Lai; W. Chen; J. Luh, “Arm exoskeleton rehabilitation robot with assistive system for patient after stroke”, Control, Automation and Systems (ICCAS), 2012 12th International Conference, pp.1943-1948, 17-21 Oct. 2012. https://www.researchgate.net/publication/261092636_Arm_exoskeleton_rehabilitation_robot_with_assistive_system_for_patient_after_stroke
  • [3]B. Mastenbroek, E. de Haan, M. van den Berg, J. Herder, “Development of a Mobile Arm Support (Armon): Design Evolution and Preliminary User Experience”, Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference, pp.1114-1120, June 2007. https://www.researchgate.net/publication/224302345_Development_of_a_Mobile_Arm_Support_Armon_Design_Evolution_and_Preliminary_User_Experience
  • [4]P. S. Lum, B. G. Charles, M. Van der Loos, P.C Shor, M. Majmundar, R. Yap, “The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke”, Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference, pp. 511-514, 28 June-1 July 2005. https://ieeexplore.ieee.org/document/1501153/
  • [5]A. J. Westerveld, B.J. Aalderink, W. Hagedoorn, M. Buijze, A.C. Schouten, H. van der Kooij, “A Damper Driven Robotic End-Point Manipulator for Functional Rehabilitation Exercises After Stroke”, Biomedical Engineering, IEEE Transactions, vol. 61, no. 10, pp. 2646-2654, Oct. 2014. https://ieeexplore.ieee.org/document/6818405
  • [6]L. Zollo, D. Accoto, F. Torchiani, D. Formica, E. Guglielmelli, “Design of a planar robotic machine for neuro-rehabilitation”, Robotics and Automation, 2008. ICRA 2008. IEEE International Conference, pp. 2031-2036, 19-23 May 2008. https://ieeexplore.ieee.org/document/4543505/
  • [7]J. XueJun, J. Dae Ik, J. Xuemei, P. Sukho, P. Jong-Oh, K. S. Young, “Workspace analysis of upper limb for a planar cable-driven parallel robots toward upper limb rehabilitation”, Control, Automation and Systems (ICCAS), 2014 14th International Conference, pp. 352-356, October 2014. https://ieeexplore.ieee.org/document/6988021/
  • [8]S. H. Lee, G. Park, D. Y. Cho, H. Y. Kim, J. Y. Lee, S. Kim, & J. H. Shin, “Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment". Scientific reports, vol. 10, no. 1, pp. 1-8. 2020. https://www.hindawi.com/journals/jhe/2017/4931217/
  • [9]L. Zhang, S. Guo, & Q. Sun, “Development and Assist-As-Needed Control of an End-Effector Upper Limb Rehabilitation Robot”, Applied Sciences, vol. 10, no. 19, 2020. https://www.mdpi.com/2076-3417/10/19/6684
  • [10]Y. Liu, C. Li, L. Ji, S. Bi, X. Zhang, J. Huo, & R.Ji“Development and implementation of an end-effector upper limb rehabilitation robot for hemiplegic patients with line and circle tracking training”,Journal ofHealthcareEngineering, 2017. https://www.hindawi.com/journals/bmri/2020/5425741/
  • [11]M. Eslami, A. Mokhtarian, M. Pirmoradian, A. Seifzadeh, & M., “Design and fabrication of a passive upper limb rehabilitation robot with adjustableautomatic balance based on variable mass of end-effector”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 12, pp. 1-8, 2020 https://link.springer.com/article/10.1007/s40430-020-02707-6
  • [12]F. Scotto di Luzio, D. Simonetti, F. Cordella, S. Miccinilli, S. Sterzi, F. Draicchio, L. Zollo, “Bio-cooperative approach for the human-in-the-loop control of an end-effector rehabilitation robot”, Frontiers in neurorobotics, vol. 12, no. 67, 2018 https://www.frontiersin.org/articles/10.3389/fnbot.2018.00067/full
  • [13]J. C. Fraile, J. Perez-Turiel, E. Baeyens, P. Vinas, R. Alonso, A. Cuadrado & F. Nieto, “A robotic platform for upper limb rehabilitation in patients with neuromotor disability”, Advances in Mechanical Engineering, vol. 8, no. 8, 2016. https://journals.sagepub.com/doi/full/10.1177/1687814016659050
  • [14]S. H. Chen, W. M. Lien, W.W. Wang, G. D. Lee, L. C. Hsu, K. W. Lee, & J. J. Luh, “Assistive control system for upper limb rehabilitation robot”. IEEE Transactions on Neural Systems andRehabilitation Engineering, vol. 24, no. 11, 2016. https://ieeexplore.ieee.org/abstract/document/7419333?casa_token=hDH3GLGDZHsAAAAA:Qvd0QAjQHGCFAwOo8KOl1RxBw6OCAePz9WneRC2eXtspyhvZXBaKk0HJPwyFDX2o1ha5JzUY2w
  • [15]X. Liu, G. Zuo, J. Zhang & J. Wang, “Sensorlessforce estimation of end-effect upper limb rehabilitation robot system with friction compensation”, International Journal of Advanced Robotic Systems, vol. 16, no. 4, 2019 https://journals.sagepub.com/doi/full/10.1177/1729881419856132
  • [16]S. Cai, W. Wu, & L. Xie, “Dual-Arm Upper Limb Rehabilitation Robot: Mechanism Design and Preliminary Experiments”. 6th International Conference on Control, Automation and Robotics (ICCAR) pp. 80-86. April 2020. https://ieeexplore.ieee.org/abstract/document/9108019?casa_token=SYOuvIzWmzQAAAAA:ke4wlxvHYj9954z35Oa2SiLEf1Agii_3_pq-qdiSU9gFStj80XfQPxm3dHl5VSE9c6GPxo3xXw
  • [17]H. Guang, L. Ji, Y. Shi, & B. J. Misgeld, “Dynamic modeling and interactive performance of PARM: A parallel upper-limb rehabilitation robot using impedance control for patients after stroke”, Journal of healthcare engineering, 2018. https://www.hindawi.com/journals/jhe/2018/8647591/
  • [18]Y. Huang, Y. Chen, J. Niu & R. Song, “EMG-Based control for Three-Dimensional upper limb movement assistance using a cable-based upper limb rehabilitation robot”, International Conference on Intelligent Robotics and Applications, pp. 273-279, August 2017. https://link.springer.com/chapter/10.1007/978-3-319-65289-4_26
  • [19]X. F. Zhang, X. Li, J. T. Dai, G. X. Pan, N. Zhang, H. Q. Fu, & Y. Inoue, “The design of a hemiplegic upper limb rehabilitation training system based on surface EMG signals”, Journal of Advanced Mechanical Design Systems and Manufacturing, vol. 12, no. 1,https://www.jstage.jst.go.jp/article/jamdsm/12/1/12_2018jamdsm0031/_article/-char/ja/
  • [20]R. Ramon & O. Bai, “Efficient upper limb joint displacement modeling using EMG signal for driving an assistive SCARA”. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA) pp. 1538-1542, August 2017, https://ieeexplore.ieee.org/abstract/document/8016045?casa_token=Qkf0q_bkFJQAAAAA:LU2xZZ1w_6DmdFUbakQhcdE8VasK12DGRJUV2Sp020C3kBd115086YJhQ3Njcn5QCCHIa4fCVw
  • [21]J. A. Díez, J. M.Catalán, L. D. Lledo, F. J. Badesa, & N. Garcia-Aracil, “Multimodal robotic system for upper-limb rehabilitation in physical environment”, Advances in Mechanical Engineering, vol. 8, no. 9, 2016, https://journals.sagepub.com/doi/full/10.1177/1687814016670282
  • [22]C. Wang, L. Peng, Z. G. Hou, L. Luo, S. Chen, & W. Wang, “EMG-Based Torque Estimation Using Time-Delay ANN for Control of an Upper-Limb Rehabilitation Robot”, In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS) pp. 585-591. August 2018. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8612261
  • [23]A. Thacham Poyil, V. Steuber & F. Amirabdollahian, “Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators”, Plos one, vol. 15, no.5, 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233545 Mohammed MANSOUR, Mustafa Çağrı KUTLUConceptual Design of EMG Based Upper Limb Power Assist Rehabilitation DeviceJournal of Smart Systems Research 2(1), 1-17, 202116
  • [24]M. Mashayekhi, & M. M. Moghaddam, “EMG-blased Fatigue Adaptation in Admittance Control of Hand Rehabilitation”. In 2019 7th International Conference on Robotics and Mechatronics (ICRoM) pp. 487-491, November 2019 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9071817
  • [25]J. Guo, S. Yu, Y. Li, T. H. Huang, J. Wang, B. Lynn & H. Su, “A soft robotic exo-sheath using fabric EMG sensing for hand rehabilitation and assistance”. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 497-503, April 2018. IEEE.https://ieeexplore.ieee.org/abstract/document/8405375?casa_token=ZBxp-6H4shUAAAAA:_SZvGac_NEkGKTsX6eHMm3QKajo4gmY9aA-JfhTrIM7-M8U0r24iL-xeXaruPLbILjhoAGt_aA
  • [26]G. Pahl, W. Beitz, J. Feldhusen and K. H. Grote, “Engineering Design”, Springer-Verlag, London, 2007. https://www.academia.edu/22269444/Engineering_Design_Springer_2007_1846283183
  • [27]K. Serbest & O. Eldoğan, “Design, development and evaluation of a new hand exoskeleton for stroke rehabilitation at home”, Journal of Polytechnic, vol. 24, no. 1, pp. 305-314, 2021. https://dergipark.org.tr/tr/download/article-file/1100655
  • [28]M. H. Jali, I. M. Ibrahim, M. F. Sulaima, W. M Bukhari, T. A. Izzuddin and M. N. M. Nasir, “Features Extraction of EMG Signal using Time Domain Analysis for Arm Rehabilitation Device”, International Conference on Mathematics on Mathematics, Engineering and Industrial Applications (ICoMEIA), vol. 1660, 2014. https://www.researchgate.net/publication/285601239_Features_Extraction_of_EMG_Signal_using_Time_Domain_Analysis_for_Arm_Rehabilitation_Device
  • [29]B. Bobath, "Adult Hemiplegia: Evaluation and treatment.", Oxford, Butterworth-Heinemann., 1990. https://www.elsevier.com/books/adult-hemiplegia-evaluation-and-treatment/bobath/978-0-7506-0168-9
  • [30]L. Ada , S. Dorsch, CG. Canning, "Strengthening interventions increase strength and improve activity after stroke: a systematic review", Australian Journal of Physiotherapy, vol. 52, pp. 241–248, 2006. http://www.luzimarteixeira.com.br/wp-content/uploads/2011/04/strengthening-interventions-increase-strength-and-improve-activity-after-stroke-sistematic-review.pdf
  • [31]M. Z. Jamal, "Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis," in Computational Intelligence in Electromyography Analysis –A Perspective on Current Applications and Future Challenges, InTech, 2012, pp. 427-448. 2012. https://www.intechopen.com/books/computational-intelligence-in-electromyography-analysis-a-perspective-on-current-applications-and-future-challenges/signal-acquisition-using-surface-emg-and-circuit-design-considerations-for-robotic-prosthesis

Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device

Year 2021, Volume: 2 Issue: 1, 1 - 17, 23.06.2021

Abstract

Recently, power assist devices have been designed and developed to assist self-rehabilitation and daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user’s motion intention. In this article, a conceptual design of electromyogram (EMG) based upper limb power assist device is proposed for elbow movements of patients who have difficulty moving their arm, but their muscle signals are still functioning. The proposed device is simple, humanlike, and adaptable to any user. The topic was academically reviewed to consider the similar devices and develop a new design. Following the conceptual design scheme, the specification and requirement list of the device was prepared. According to these specification, few possible design solutions were considered and evaluated to choose the best one. The chosen design was detailly developed and design using a CAD model. The device is designed as 1 degree of freedom (DOF) with two basic dimensions: flexion and extension.

References

  • [1]P. Patrizia, M. Giovanni, G. Rosati, S. Masiero, “Robotic technologies and rehabilitation: new tools for stroke patients therapy”, BioMed Research International. 2013. https://pubmed.ncbi.nlm.nih.gov/24350244/
  • [2]G. D. Lee, W.Wang; K. Lee, S. Chen Fu, J. Lai; W. Chen; J. Luh, “Arm exoskeleton rehabilitation robot with assistive system for patient after stroke”, Control, Automation and Systems (ICCAS), 2012 12th International Conference, pp.1943-1948, 17-21 Oct. 2012. https://www.researchgate.net/publication/261092636_Arm_exoskeleton_rehabilitation_robot_with_assistive_system_for_patient_after_stroke
  • [3]B. Mastenbroek, E. de Haan, M. van den Berg, J. Herder, “Development of a Mobile Arm Support (Armon): Design Evolution and Preliminary User Experience”, Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference, pp.1114-1120, June 2007. https://www.researchgate.net/publication/224302345_Development_of_a_Mobile_Arm_Support_Armon_Design_Evolution_and_Preliminary_User_Experience
  • [4]P. S. Lum, B. G. Charles, M. Van der Loos, P.C Shor, M. Majmundar, R. Yap, “The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke”, Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference, pp. 511-514, 28 June-1 July 2005. https://ieeexplore.ieee.org/document/1501153/
  • [5]A. J. Westerveld, B.J. Aalderink, W. Hagedoorn, M. Buijze, A.C. Schouten, H. van der Kooij, “A Damper Driven Robotic End-Point Manipulator for Functional Rehabilitation Exercises After Stroke”, Biomedical Engineering, IEEE Transactions, vol. 61, no. 10, pp. 2646-2654, Oct. 2014. https://ieeexplore.ieee.org/document/6818405
  • [6]L. Zollo, D. Accoto, F. Torchiani, D. Formica, E. Guglielmelli, “Design of a planar robotic machine for neuro-rehabilitation”, Robotics and Automation, 2008. ICRA 2008. IEEE International Conference, pp. 2031-2036, 19-23 May 2008. https://ieeexplore.ieee.org/document/4543505/
  • [7]J. XueJun, J. Dae Ik, J. Xuemei, P. Sukho, P. Jong-Oh, K. S. Young, “Workspace analysis of upper limb for a planar cable-driven parallel robots toward upper limb rehabilitation”, Control, Automation and Systems (ICCAS), 2014 14th International Conference, pp. 352-356, October 2014. https://ieeexplore.ieee.org/document/6988021/
  • [8]S. H. Lee, G. Park, D. Y. Cho, H. Y. Kim, J. Y. Lee, S. Kim, & J. H. Shin, “Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment". Scientific reports, vol. 10, no. 1, pp. 1-8. 2020. https://www.hindawi.com/journals/jhe/2017/4931217/
  • [9]L. Zhang, S. Guo, & Q. Sun, “Development and Assist-As-Needed Control of an End-Effector Upper Limb Rehabilitation Robot”, Applied Sciences, vol. 10, no. 19, 2020. https://www.mdpi.com/2076-3417/10/19/6684
  • [10]Y. Liu, C. Li, L. Ji, S. Bi, X. Zhang, J. Huo, & R.Ji“Development and implementation of an end-effector upper limb rehabilitation robot for hemiplegic patients with line and circle tracking training”,Journal ofHealthcareEngineering, 2017. https://www.hindawi.com/journals/bmri/2020/5425741/
  • [11]M. Eslami, A. Mokhtarian, M. Pirmoradian, A. Seifzadeh, & M., “Design and fabrication of a passive upper limb rehabilitation robot with adjustableautomatic balance based on variable mass of end-effector”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 12, pp. 1-8, 2020 https://link.springer.com/article/10.1007/s40430-020-02707-6
  • [12]F. Scotto di Luzio, D. Simonetti, F. Cordella, S. Miccinilli, S. Sterzi, F. Draicchio, L. Zollo, “Bio-cooperative approach for the human-in-the-loop control of an end-effector rehabilitation robot”, Frontiers in neurorobotics, vol. 12, no. 67, 2018 https://www.frontiersin.org/articles/10.3389/fnbot.2018.00067/full
  • [13]J. C. Fraile, J. Perez-Turiel, E. Baeyens, P. Vinas, R. Alonso, A. Cuadrado & F. Nieto, “A robotic platform for upper limb rehabilitation in patients with neuromotor disability”, Advances in Mechanical Engineering, vol. 8, no. 8, 2016. https://journals.sagepub.com/doi/full/10.1177/1687814016659050
  • [14]S. H. Chen, W. M. Lien, W.W. Wang, G. D. Lee, L. C. Hsu, K. W. Lee, & J. J. Luh, “Assistive control system for upper limb rehabilitation robot”. IEEE Transactions on Neural Systems andRehabilitation Engineering, vol. 24, no. 11, 2016. https://ieeexplore.ieee.org/abstract/document/7419333?casa_token=hDH3GLGDZHsAAAAA:Qvd0QAjQHGCFAwOo8KOl1RxBw6OCAePz9WneRC2eXtspyhvZXBaKk0HJPwyFDX2o1ha5JzUY2w
  • [15]X. Liu, G. Zuo, J. Zhang & J. Wang, “Sensorlessforce estimation of end-effect upper limb rehabilitation robot system with friction compensation”, International Journal of Advanced Robotic Systems, vol. 16, no. 4, 2019 https://journals.sagepub.com/doi/full/10.1177/1729881419856132
  • [16]S. Cai, W. Wu, & L. Xie, “Dual-Arm Upper Limb Rehabilitation Robot: Mechanism Design and Preliminary Experiments”. 6th International Conference on Control, Automation and Robotics (ICCAR) pp. 80-86. April 2020. https://ieeexplore.ieee.org/abstract/document/9108019?casa_token=SYOuvIzWmzQAAAAA:ke4wlxvHYj9954z35Oa2SiLEf1Agii_3_pq-qdiSU9gFStj80XfQPxm3dHl5VSE9c6GPxo3xXw
  • [17]H. Guang, L. Ji, Y. Shi, & B. J. Misgeld, “Dynamic modeling and interactive performance of PARM: A parallel upper-limb rehabilitation robot using impedance control for patients after stroke”, Journal of healthcare engineering, 2018. https://www.hindawi.com/journals/jhe/2018/8647591/
  • [18]Y. Huang, Y. Chen, J. Niu & R. Song, “EMG-Based control for Three-Dimensional upper limb movement assistance using a cable-based upper limb rehabilitation robot”, International Conference on Intelligent Robotics and Applications, pp. 273-279, August 2017. https://link.springer.com/chapter/10.1007/978-3-319-65289-4_26
  • [19]X. F. Zhang, X. Li, J. T. Dai, G. X. Pan, N. Zhang, H. Q. Fu, & Y. Inoue, “The design of a hemiplegic upper limb rehabilitation training system based on surface EMG signals”, Journal of Advanced Mechanical Design Systems and Manufacturing, vol. 12, no. 1,https://www.jstage.jst.go.jp/article/jamdsm/12/1/12_2018jamdsm0031/_article/-char/ja/
  • [20]R. Ramon & O. Bai, “Efficient upper limb joint displacement modeling using EMG signal for driving an assistive SCARA”. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA) pp. 1538-1542, August 2017, https://ieeexplore.ieee.org/abstract/document/8016045?casa_token=Qkf0q_bkFJQAAAAA:LU2xZZ1w_6DmdFUbakQhcdE8VasK12DGRJUV2Sp020C3kBd115086YJhQ3Njcn5QCCHIa4fCVw
  • [21]J. A. Díez, J. M.Catalán, L. D. Lledo, F. J. Badesa, & N. Garcia-Aracil, “Multimodal robotic system for upper-limb rehabilitation in physical environment”, Advances in Mechanical Engineering, vol. 8, no. 9, 2016, https://journals.sagepub.com/doi/full/10.1177/1687814016670282
  • [22]C. Wang, L. Peng, Z. G. Hou, L. Luo, S. Chen, & W. Wang, “EMG-Based Torque Estimation Using Time-Delay ANN for Control of an Upper-Limb Rehabilitation Robot”, In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS) pp. 585-591. August 2018. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8612261
  • [23]A. Thacham Poyil, V. Steuber & F. Amirabdollahian, “Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators”, Plos one, vol. 15, no.5, 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233545 Mohammed MANSOUR, Mustafa Çağrı KUTLUConceptual Design of EMG Based Upper Limb Power Assist Rehabilitation DeviceJournal of Smart Systems Research 2(1), 1-17, 202116
  • [24]M. Mashayekhi, & M. M. Moghaddam, “EMG-blased Fatigue Adaptation in Admittance Control of Hand Rehabilitation”. In 2019 7th International Conference on Robotics and Mechatronics (ICRoM) pp. 487-491, November 2019 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9071817
  • [25]J. Guo, S. Yu, Y. Li, T. H. Huang, J. Wang, B. Lynn & H. Su, “A soft robotic exo-sheath using fabric EMG sensing for hand rehabilitation and assistance”. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 497-503, April 2018. IEEE.https://ieeexplore.ieee.org/abstract/document/8405375?casa_token=ZBxp-6H4shUAAAAA:_SZvGac_NEkGKTsX6eHMm3QKajo4gmY9aA-JfhTrIM7-M8U0r24iL-xeXaruPLbILjhoAGt_aA
  • [26]G. Pahl, W. Beitz, J. Feldhusen and K. H. Grote, “Engineering Design”, Springer-Verlag, London, 2007. https://www.academia.edu/22269444/Engineering_Design_Springer_2007_1846283183
  • [27]K. Serbest & O. Eldoğan, “Design, development and evaluation of a new hand exoskeleton for stroke rehabilitation at home”, Journal of Polytechnic, vol. 24, no. 1, pp. 305-314, 2021. https://dergipark.org.tr/tr/download/article-file/1100655
  • [28]M. H. Jali, I. M. Ibrahim, M. F. Sulaima, W. M Bukhari, T. A. Izzuddin and M. N. M. Nasir, “Features Extraction of EMG Signal using Time Domain Analysis for Arm Rehabilitation Device”, International Conference on Mathematics on Mathematics, Engineering and Industrial Applications (ICoMEIA), vol. 1660, 2014. https://www.researchgate.net/publication/285601239_Features_Extraction_of_EMG_Signal_using_Time_Domain_Analysis_for_Arm_Rehabilitation_Device
  • [29]B. Bobath, "Adult Hemiplegia: Evaluation and treatment.", Oxford, Butterworth-Heinemann., 1990. https://www.elsevier.com/books/adult-hemiplegia-evaluation-and-treatment/bobath/978-0-7506-0168-9
  • [30]L. Ada , S. Dorsch, CG. Canning, "Strengthening interventions increase strength and improve activity after stroke: a systematic review", Australian Journal of Physiotherapy, vol. 52, pp. 241–248, 2006. http://www.luzimarteixeira.com.br/wp-content/uploads/2011/04/strengthening-interventions-increase-strength-and-improve-activity-after-stroke-sistematic-review.pdf
  • [31]M. Z. Jamal, "Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis," in Computational Intelligence in Electromyography Analysis –A Perspective on Current Applications and Future Challenges, InTech, 2012, pp. 427-448. 2012. https://www.intechopen.com/books/computational-intelligence-in-electromyography-analysis-a-perspective-on-current-applications-and-future-challenges/signal-acquisition-using-surface-emg-and-circuit-design-considerations-for-robotic-prosthesis
There are 31 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

Mohammed Mansour

Mustafa Çağrı Kutlu This is me

Publication Date June 23, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Mansour, M., & Kutlu, M. Ç. (2021). Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device. Journal of Smart Systems Research, 2(1), 1-17.
AMA Mansour M, Kutlu MÇ. Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device. JoinSSR. June 2021;2(1):1-17.
Chicago Mansour, Mohammed, and Mustafa Çağrı Kutlu. “Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device”. Journal of Smart Systems Research 2, no. 1 (June 2021): 1-17.
EndNote Mansour M, Kutlu MÇ (June 1, 2021) Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device. Journal of Smart Systems Research 2 1 1–17.
IEEE M. Mansour and M. Ç. Kutlu, “Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device”, JoinSSR, vol. 2, no. 1, pp. 1–17, 2021.
ISNAD Mansour, Mohammed - Kutlu, Mustafa Çağrı. “Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device”. Journal of Smart Systems Research 2/1 (June 2021), 1-17.
JAMA Mansour M, Kutlu MÇ. Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device. JoinSSR. 2021;2:1–17.
MLA Mansour, Mohammed and Mustafa Çağrı Kutlu. “Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device”. Journal of Smart Systems Research, vol. 2, no. 1, 2021, pp. 1-17.
Vancouver Mansour M, Kutlu MÇ. Conceptual Design of EMG Based Upper Limb Power Assist Rehabilitation Device. JoinSSR. 2021;2(1):1-17.