Review
BibTex RIS Cite

Orthoses: A Systematic Review

Year 2021, Volume: 2 Issue: 2, 135 - 149, 30.12.2021

Abstract

The purpose of this review paper was to investigate some of the existing studies in the open literature that have novel innovations in the field of orthotics. There are some methods to regain the functions of injured or damaged limbs. It is worth mentioning that orthoses are of paramount importance among these methods. Orthoses are used as an external device to improve the structure and function of an organ in the body. In addition, orthoses prevent pain and deformity development in the limb. There are different types and applications of orthoses and their usage areas are quite wide. Moreover, orthoses are fabricated from different materials such as metal, leather, plastic or a combination of different materials, prefabricated or individually, according to the desired organ by the technical orthopedic specialist. This paper comprehensively reviews the studies that brought innovations to the orthotics literature. Consequently, this review paper provides researchers a useful reference on orthosis parameters such as modelling, material, geometry, and size optimization for key biomechanics applications.

References

  • [1] Fleischer, C., Reinicke, C., & Hommel, G. (2005, August). Predicting the intended motion with EMG signals for an exoskeleton orthosis controller. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2029-2034). IEEE.
  • [2] ALSANCAK, S. (2000). Ortez ve Protez Tarihçesi. Ankara Sağlık Hizmetleri Dergisi, 1(1), 27-33.
  • [3] Burdett, R. G., Borello-France, D., Blatchly, C., & Potter, C. (1988). Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup® brace. Physical Therapy, 68(8), 1197-1203.
  • [4] Lam, W. K., Leong, J. C. Y., Li, Y. H., Hu, Y., & Lu, W. W. (2005). Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait & posture, 22(3), 189-197.
  • [5] Ates, S., Haarman, C. J., & Stienen, A. H. (2017). SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Autonomous Robots, 41(3), 711-723.
  • [6] Kao, P. C., & Ferris, D. P. (2009). Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait & posture, 29(2), 230-236.
  • [7] Grissom, S. P., & Blanton, S. (2001). Treatment of upper motoneuron plantarflexion contractures by using an adjustable ankle-foot orthosis. Archives of physical medicine and rehabilitation, 82(2), 270-273.
  • [8] Miyazaki, S., Yamamoto, S., & Kubota, T. (1997). Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Medical and Biological Engineering and Computing, 35(4), 381-385.
  • [9] Danino, B., Erel, S., Kfir, M., Khamis, S., Batt, R., Hemo, Y., ... & Hayek, S. (2015). Influence of orthosis on the foot progression angle in children with spastic cerebral palsy. Gait & posture, 42(4), 518-522.
  • [10] Arazpour, M., Bani, M. A., Hutchins, S. W., & Jones, R. K. (2013). The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury. Spinal Cord, 51(5), 356-359.
  • [11] Allemand, Y., Stauffer, Y., Clavel, R., & Brodard, R. (2009, June). Design of a new lower extremity orthosis for overground gait training with the WalkTrainer. In 2009 IEEE International Conference on Rehabilitation Robotics (pp. 550-555). IEEE.
  • [12] Bates, B. T., Osternig, L. R., Mason, B., & James, L. S. (1979). Foot orthotic devices to modify selected aspects of lower extremity mechanics. The American journal of sports medicine, 7(6), 338-342.
  • [13] Chen, B., Zi, B., Zeng, Y., Qin, L., & Liao, W. H. (2018). Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges. Mechatronics, 53, 241-250.
  • [14] Meng, Q., Hu, J., & Zhu, Y. (2008). Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Journal of Biomaterials Science, Polymer Edition, 19(11), 1437-1454.
  • [15] Zou, D., He, T., Dailey, M., Smith, K. E., Silva, M. J., Sinacore, D. R., ... & Hastings, M. K. (2014). Experimental and computational analysis of composite ankle-foot orthosis. Journal of rehabilitation research and development, 51(10), 1525.
  • [16] Chu, T. M., & Reddy, N. P. (1995). Stress distribution in the ankle-foot orthosis used to correct pathological gait. Journal of rehabilitation research and development, 32, 349-360.
  • [17] Bartonek, Å., Eriksson, M., & Gutierrez-Farewik, E. M. (2007). A new carbon fibre spring orthosis for children with plantarflexor weakness. Gait & posture, 25(4), 652-656.
  • [18] Del Bianco, J., & Fatone, S. (2008). Comparison of silicone and posterior leaf spring ankle-foot orthoses in a subject with Charcot-Marie-Tooth disorder. JPO: Journal of Prosthetics and Orthotics, 20(4), 155-162.
  • [19] Goiriena, A., Retolaza, I., Cenitagoya, A., Martinez, F., Riano, S., & Landaluze, J. (2009, April). Analysis of bowden cable transmission performance for orthosis applications. In 2009 IEEE International Conference on Mechatronics (pp. 1-6). IEEE.
  • [20] Lyons, G. M., Sinkjær, T., Burridge, J. H., & Wilcox, D. J. (2002). A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Transactions on neural systems and rehabilitation engineering, 10(4), 260-279.
  • [21] Alamdari, A., Haghighi, R., & Krovi, V. (2018). Stiffness modulation in an elastic articulated-cable leg-orthosis emulator: Theory and experiment. IEEE Transactions on Robotics, 34(5), 1266-1279.
  • [22] Rietman, J. S., Goudsmit, J., Meulemans, D., Halbertsma, J. P. K., & Geertzen, J. H. B. (2004). An automatic hinge system for leg orthoses. Prosthetics and Orthotics International, 28(1), 64-68.
  • [23] Belforte, G., Gastaldi, L., & Sorli, M. (2001). Pneumatic active gait orthosis. Mechatronics, 11(3), 301-323.
  • [24] Noël, M., Cantin, B., Lambert, S., Gosselin, C. M., & Bouyer, L. J. (2008). An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 390-399.
  • [25] Banala, S. K., Kulpe, A., & Agrawal, S. K. (2007, April). A powered leg orthosis for gait rehabilitation of motor-impaired patients. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 4140-4145). IEEE.
  • [26] Patar, A., Jamlus, N., Makhtar, K., Mahmud, J., & Komeda, T. (2012). Development of dynamic ankle foot orthosis for therapeutic application. Procedia Engineering, 41, 1432-1440.
  • [27] Boehler, A. W., Hollander, K. W., Sugar, T. G., & Shin, D. (2008, May). Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). In 2008 IEEE International Conference on Robotics and Automation (pp. 2025-2030). IEEE.
  • [28] Andrikopoulos, G., Nikolakopoulos, G., & Manesis, S. (2011, June). A survey on applications of pneumatic artificial muscles. In 2011 19th Mediterranean Conference on Control & Automation (MED) (pp. 1439-1446). IEEE.
  • [29] Low, J. H., Ang, M. H., & Yeow, C. H. (2015, August). Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 380-385). IEEE.
  • [30] Hong, T. H., Park, S. H., Park, J. H., Paik, N. J., & Park, Y. L. (2020, May). Design of pneumatic origami muscle actuators (POMAs) for a soft robotic hand orthosis for grasping assistance. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 627-632). IEEE.
  • [31] Bos, R. A., Nizamis, K., Plettenburg, D. H., & Herder, J. L. (2018, August). Design of an electrohydraulic hand orthosis for people with Duchenne muscular dystrophy using commercially available components. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 305-311). IEEE.
  • [32] Bos, R. A., Nizamis, K., Koopman, B. F., Herder, J. L., Sartori, M., & Plettenburg, D. H. (2019). A case study with SymbiHand: an sEMG-controlled electrohydraulic hand orthosis for individuals with Duchenne muscular dystrophy. IEEE transactions on neural systems and rehabilitation engineering, 28(1), 258-266.
  • [33] Ates, S., Mora-Moreno, I., Wessels, M., & Stienen, A. H. (2015, August). Combined active wrist and hand orthosis for home use: Lessons learned. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 398-403). IEEE.
  • [34] Dunaway, S., Dezsi, D. B., Perkins, J., Tran, D., & Naft, J. (2017). Case report on the use of a custom myoelectric elbow–wrist–hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Military medicine, 182(7), e1963-e1968.
  • [35] Yoo, H. J., Lee, S., Kim, J., Park, C., & Lee, B. (2019). Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. Journal of neuroengineering and rehabilitation, 16(1), 1-14.
  • [36] Yurkewich, A., Hebert, D., Wang, R. H., & Mihailidis, A. (2019). Hand extension robot orthosis (HERO) glove: development and testing with stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 916-926.
  • [37] Gasser, B. W., & Goldfarb, M. (2015, August). Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3877-3880). IEEE.
  • [38] Meeker, C., Park, S., Bishop, L., Stein, J., & Ciocarlie, M. (2017, July). EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. In 2017 international conference on rehabilitation robotics (ICORR) (pp. 1203-1210). IEEE.
  • [39] Barry, J. G., Ross, S. A., & Woehrle, J. (2012). Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: A pilot study. Journal of Neurologic Physical Therapy, 36(1), 17-24.
  • [40] Park, S., Weber, L., Bishop, L., Stein, J., & Ciocarlie, M. (2018, May). Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2281-2287). IEEE.
  • [41] Ates, S., Leon, B., Basteris, A., Nijenhuis, S., Nasr, N., Sale, P., ... & Stienen, A. H. (2014, June). Technical evaluation of and clinical experiences with the SCRIPT passive wrist and hand orthosis. In 2014 7th International Conference on Human System Interactions (HSI) (pp. 188-193). IEEE.
  • [42] Ryser, F., Bützer, T., Held, J. P., Lambercy, O., & Gassert, R. (2017, July). Fully embedded myoelectric control for a wearable robotic hand orthosis. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 615-621). IEEE.
  • [43] Haarman, C. J., Hekman, E. E., Prange, G. B., & Van Der Kooij, H. (2018, August). Joint stiffness compensation for application in the EXTEND hand orthosis. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 677-682). IEEE.
  • [44] Ortner, R., Allison, B. Z., Korisek, G., Gaggl, H., & Pfurtscheller, G. (2010). An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE transactions on neural systems and rehabilitation engineering, 19(1), 1-5.
  • [45] Jeon, H. S., Woo, Y. K., Yi, C. H., Kwon, O. Y., Jung, M. Y., Lee, Y. H., ... & Choi, B. R. (2012). Effect of intensive training with a pring-assisted hand orthosis on movement smoothness in upper extremity following stroke: A pilot clinical trial. Topics in stroke rehabilitation, 19(4), 320-328.
  • [46] King, C. E., Wang, P. T., Mizuta, M., Reinkensmeyer, D. J., Do, A. H., Moromugi, S., & Nenadic, Z. (2011, January). Noninvasive brain-computer interface driven hand orthosis. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5786-5789). IEEE.
  • [47] Stan, A., Irimia, D. C., Botezatu, N. A., & Lupu, R. G. (2015, November). Controlling a hand orthosis by means of P300-based brain computer interface. In 2015 E-Health and Bioengineering Conference (EHB) (pp. 1-4). IEEE.
  • [48] Saharan, L., Sharma, A., de Andrade, M. J., Baughman, R. H., & Tadesse, Y. (2017, April). Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis. In Active and Passive Smart Structures and Integrated Systems 2017 (Vol. 10164, p. 1016428). International Society for Optics and Photonics.
  • [49] Carpi, F., Frediani, G., Gerboni, C., Gemignani, J., & De Rossi, D. (2014). Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Medical engineering & physics, 36(2), 205-211.
  • [50] Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315-322.
  • [51] DiCicco, M., Lucas, L., & Matsuoka, Y. (2004, April). Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1622-1627). ieee.
  • [52] Ferris, D. P., Taylor, M., & Peethambaran, A. (2003, July). An improved ankle-foot orthosis powered by artificial pneumatic muscles. In XIXth Congress of the International Society of Biomechanics, Dunedin, New Zealand.
  • [53] Chin, R., Hsiao-Wecksler, E. T., Loth, E., Kogler, G., Manwaring, S. D., Tyson, S. N., ... & Gilmer, J. N. (2009). A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. Journal of neuroengineering and rehabilitation, 6(1), 1-11.
  • [54] Sawicki, G. S., & Ferris, D. P. (2009). A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of neuroengineering and rehabilitation, 6(1), 1-16.
  • [55] Yamamoto, S., Hagiwara, A., Mizobe, T., Yokoyama, O., & Yasui, T. (2005). Development of an ankle–foot orthosis with an oil damper. Prosthetics and orthotics international, 29(3), 209-219.
  • [56] NAITO, H., AKAZAWA, Y., TAGAYA, K., MATSUMOTO, T., & TANAKA, M. (2009). An ankle-foot orthosis with a variable-resistance ankle joint using a magnetorheological-fluid rotary damper. Journal of Biomechanical Science and Engineering, 4(2), 182-191.
  • [57] Shorter, K. A., Kogler, G. F., Loth, E., Durfee, W. K., & Hsiao-Wecksler, E. T. (2011). A portable powered ankle-foot orthosis for rehabilitation. Journal of Rehabilitation Research & Development, 48(4).
  • [58] Karpe, S., Sahoo, K., Varadharajulu, G., & Kanase, S. (2021, February). Device customization with novel adhesive electrode. In IOP Conference Series: Materials Science and Engineering (Vol. 1091, No. 1, p. 012012). IOP Publishing.
  • [59] Suga, T., Kameyama, O., Ogawa, R., Matsuura, M., & Oka, H. (1998). Newly designed computer controlled knee-ankle-foot orthosis (Intelligent Orthosis). Prosthetics and orthotics international, 22(3), 230-239.
  • [60] Kobayashi, T., Leung, A. K. L., Akazawa, Y., Naito, H., Tanaka, M., & Hutchins, S. W. (2010). Design of an automated device to measure sagittal plane stiffness of an articulated ankle-foot orthosis. Prosthetics and orthotics international, 34(4), 439-448.
  • [61] Liu, Y., Zang, X., Zhang, N., & Wu, M. (2018). Design and evaluation of a wearable powered foot orthosis with metatarsophalangeal joint. Applied bionics and biomechanics, 2018.
  • [62] Polinkovsky, A., Bachmann, R. J., Kern, N. I., & Quinn, R. D. (2012, October). An ankle foot orthosis with insertion point eccentricity control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1603-1608). IEEE.
  • [63] Walbran, M., Turner, K., & McDaid, A. J. (2016). Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint. Cogent Engineering, 3(1), 1227022.
  • [64] Amerinatanzi, A., Zamanian, H., Shayesteh Moghaddam, N., Jahadakbar, A., & Elahinia, M. (2017). Application of the superelastic NiTi spring in ankle foot orthosis (AFO) to create normal ankle joint behavior. Bioengineering, 4(4), 95.
  • [65] Cullell, A., Moreno, J. C., Rocon, E., Forner-Cordero, A., & Pons, J. L. (2009). Biologically based design of an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory, 44(4), 860-872.
  • [66] Banga, H. K., Kalra, P., Belokar, R. M., & Kumar, R. (2020). Customized design and additive manufacturing of kids’ ankle foot orthosis. Rapid Prototyping Journal.
  • [67] Hirai, H., Ozawa, R., Goto, S., Fujigaya, H., Yamasaki, S., Hatanaka, Y., & Kawamura, S. (2006, September). Development of an ankle-foot orthosis with a pneumatic passive element. In ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication (pp. 220-225). IEEE.
  • [68] Kubasad, P. R., Gawande, V. A., Todeti, S. R., Kamat, Y. D., & Vamshi, N. (2020, December). Design and analysis of a passive ankle foot orthosis by using transient structural method. In Journal of Physics: Conference Series (Vol. 1706, No. 1, p. 012203). IOP Publishing.
  • [69] Gil, J., Sánchez-Villamañán, M. C., Gomez, J., Ortiz, A., Pons, J. L., Moreno, J. C., & Del-Ama, A. J. (2018, October). Design and Implementation of a Novel Semi-Active Hybrid Unilateral Stance Control Knee Ankle Foot Orthosis. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5163-5168). IEEE.
  • [70] Oba, T., Kadone, H., Hassan, M., & Suzuki, K. (2019). Robotic ankle–foot orthosis with a variable viscosity link using MR fluid. IEEE/ASME Transactions on Mechatronics, 24(2), 495-504.
  • [71] Blaya, J. A., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on neural systems and rehabilitation engineering, 12(1), 24-31.
  • [72] Telfer, S., Pallari, J., Munguia, J., Dalgarno, K., McGeough, M., & Woodburn, J. (2012). Embracing additive manufacture: implications for foot and ankle orthosis design. BMC musculoskeletal disorders, 13(1), 1-9.
  • [73] Alam, M., Choudhury, I. A., & Mamat, A. B. (2014). Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. The Scientific World Journal, 2014.
  • [74] Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D. H., & Kim, S. J. (2017). Ankle-foot orthosis made by 3D printing technique and automated design software. Applied bionics and biomechanics, 2017.
  • [75] GAUTAM, G. Y., Jain, M. L., & GEHLOT, V. (2021). DESIGN AND ANALYSIS OF THERMOPLASTIC POLYPROPYLENE ANKLE FOOT ORTHOSIS. Journal of Manufacturing Engineering, 16(3), 087-091.
Year 2021, Volume: 2 Issue: 2, 135 - 149, 30.12.2021

Abstract

References

  • [1] Fleischer, C., Reinicke, C., & Hommel, G. (2005, August). Predicting the intended motion with EMG signals for an exoskeleton orthosis controller. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2029-2034). IEEE.
  • [2] ALSANCAK, S. (2000). Ortez ve Protez Tarihçesi. Ankara Sağlık Hizmetleri Dergisi, 1(1), 27-33.
  • [3] Burdett, R. G., Borello-France, D., Blatchly, C., & Potter, C. (1988). Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup® brace. Physical Therapy, 68(8), 1197-1203.
  • [4] Lam, W. K., Leong, J. C. Y., Li, Y. H., Hu, Y., & Lu, W. W. (2005). Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait & posture, 22(3), 189-197.
  • [5] Ates, S., Haarman, C. J., & Stienen, A. H. (2017). SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Autonomous Robots, 41(3), 711-723.
  • [6] Kao, P. C., & Ferris, D. P. (2009). Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait & posture, 29(2), 230-236.
  • [7] Grissom, S. P., & Blanton, S. (2001). Treatment of upper motoneuron plantarflexion contractures by using an adjustable ankle-foot orthosis. Archives of physical medicine and rehabilitation, 82(2), 270-273.
  • [8] Miyazaki, S., Yamamoto, S., & Kubota, T. (1997). Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Medical and Biological Engineering and Computing, 35(4), 381-385.
  • [9] Danino, B., Erel, S., Kfir, M., Khamis, S., Batt, R., Hemo, Y., ... & Hayek, S. (2015). Influence of orthosis on the foot progression angle in children with spastic cerebral palsy. Gait & posture, 42(4), 518-522.
  • [10] Arazpour, M., Bani, M. A., Hutchins, S. W., & Jones, R. K. (2013). The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury. Spinal Cord, 51(5), 356-359.
  • [11] Allemand, Y., Stauffer, Y., Clavel, R., & Brodard, R. (2009, June). Design of a new lower extremity orthosis for overground gait training with the WalkTrainer. In 2009 IEEE International Conference on Rehabilitation Robotics (pp. 550-555). IEEE.
  • [12] Bates, B. T., Osternig, L. R., Mason, B., & James, L. S. (1979). Foot orthotic devices to modify selected aspects of lower extremity mechanics. The American journal of sports medicine, 7(6), 338-342.
  • [13] Chen, B., Zi, B., Zeng, Y., Qin, L., & Liao, W. H. (2018). Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges. Mechatronics, 53, 241-250.
  • [14] Meng, Q., Hu, J., & Zhu, Y. (2008). Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Journal of Biomaterials Science, Polymer Edition, 19(11), 1437-1454.
  • [15] Zou, D., He, T., Dailey, M., Smith, K. E., Silva, M. J., Sinacore, D. R., ... & Hastings, M. K. (2014). Experimental and computational analysis of composite ankle-foot orthosis. Journal of rehabilitation research and development, 51(10), 1525.
  • [16] Chu, T. M., & Reddy, N. P. (1995). Stress distribution in the ankle-foot orthosis used to correct pathological gait. Journal of rehabilitation research and development, 32, 349-360.
  • [17] Bartonek, Å., Eriksson, M., & Gutierrez-Farewik, E. M. (2007). A new carbon fibre spring orthosis for children with plantarflexor weakness. Gait & posture, 25(4), 652-656.
  • [18] Del Bianco, J., & Fatone, S. (2008). Comparison of silicone and posterior leaf spring ankle-foot orthoses in a subject with Charcot-Marie-Tooth disorder. JPO: Journal of Prosthetics and Orthotics, 20(4), 155-162.
  • [19] Goiriena, A., Retolaza, I., Cenitagoya, A., Martinez, F., Riano, S., & Landaluze, J. (2009, April). Analysis of bowden cable transmission performance for orthosis applications. In 2009 IEEE International Conference on Mechatronics (pp. 1-6). IEEE.
  • [20] Lyons, G. M., Sinkjær, T., Burridge, J. H., & Wilcox, D. J. (2002). A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Transactions on neural systems and rehabilitation engineering, 10(4), 260-279.
  • [21] Alamdari, A., Haghighi, R., & Krovi, V. (2018). Stiffness modulation in an elastic articulated-cable leg-orthosis emulator: Theory and experiment. IEEE Transactions on Robotics, 34(5), 1266-1279.
  • [22] Rietman, J. S., Goudsmit, J., Meulemans, D., Halbertsma, J. P. K., & Geertzen, J. H. B. (2004). An automatic hinge system for leg orthoses. Prosthetics and Orthotics International, 28(1), 64-68.
  • [23] Belforte, G., Gastaldi, L., & Sorli, M. (2001). Pneumatic active gait orthosis. Mechatronics, 11(3), 301-323.
  • [24] Noël, M., Cantin, B., Lambert, S., Gosselin, C. M., & Bouyer, L. J. (2008). An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 390-399.
  • [25] Banala, S. K., Kulpe, A., & Agrawal, S. K. (2007, April). A powered leg orthosis for gait rehabilitation of motor-impaired patients. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 4140-4145). IEEE.
  • [26] Patar, A., Jamlus, N., Makhtar, K., Mahmud, J., & Komeda, T. (2012). Development of dynamic ankle foot orthosis for therapeutic application. Procedia Engineering, 41, 1432-1440.
  • [27] Boehler, A. W., Hollander, K. W., Sugar, T. G., & Shin, D. (2008, May). Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). In 2008 IEEE International Conference on Robotics and Automation (pp. 2025-2030). IEEE.
  • [28] Andrikopoulos, G., Nikolakopoulos, G., & Manesis, S. (2011, June). A survey on applications of pneumatic artificial muscles. In 2011 19th Mediterranean Conference on Control & Automation (MED) (pp. 1439-1446). IEEE.
  • [29] Low, J. H., Ang, M. H., & Yeow, C. H. (2015, August). Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 380-385). IEEE.
  • [30] Hong, T. H., Park, S. H., Park, J. H., Paik, N. J., & Park, Y. L. (2020, May). Design of pneumatic origami muscle actuators (POMAs) for a soft robotic hand orthosis for grasping assistance. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 627-632). IEEE.
  • [31] Bos, R. A., Nizamis, K., Plettenburg, D. H., & Herder, J. L. (2018, August). Design of an electrohydraulic hand orthosis for people with Duchenne muscular dystrophy using commercially available components. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 305-311). IEEE.
  • [32] Bos, R. A., Nizamis, K., Koopman, B. F., Herder, J. L., Sartori, M., & Plettenburg, D. H. (2019). A case study with SymbiHand: an sEMG-controlled electrohydraulic hand orthosis for individuals with Duchenne muscular dystrophy. IEEE transactions on neural systems and rehabilitation engineering, 28(1), 258-266.
  • [33] Ates, S., Mora-Moreno, I., Wessels, M., & Stienen, A. H. (2015, August). Combined active wrist and hand orthosis for home use: Lessons learned. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 398-403). IEEE.
  • [34] Dunaway, S., Dezsi, D. B., Perkins, J., Tran, D., & Naft, J. (2017). Case report on the use of a custom myoelectric elbow–wrist–hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Military medicine, 182(7), e1963-e1968.
  • [35] Yoo, H. J., Lee, S., Kim, J., Park, C., & Lee, B. (2019). Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. Journal of neuroengineering and rehabilitation, 16(1), 1-14.
  • [36] Yurkewich, A., Hebert, D., Wang, R. H., & Mihailidis, A. (2019). Hand extension robot orthosis (HERO) glove: development and testing with stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 916-926.
  • [37] Gasser, B. W., & Goldfarb, M. (2015, August). Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3877-3880). IEEE.
  • [38] Meeker, C., Park, S., Bishop, L., Stein, J., & Ciocarlie, M. (2017, July). EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. In 2017 international conference on rehabilitation robotics (ICORR) (pp. 1203-1210). IEEE.
  • [39] Barry, J. G., Ross, S. A., & Woehrle, J. (2012). Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: A pilot study. Journal of Neurologic Physical Therapy, 36(1), 17-24.
  • [40] Park, S., Weber, L., Bishop, L., Stein, J., & Ciocarlie, M. (2018, May). Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2281-2287). IEEE.
  • [41] Ates, S., Leon, B., Basteris, A., Nijenhuis, S., Nasr, N., Sale, P., ... & Stienen, A. H. (2014, June). Technical evaluation of and clinical experiences with the SCRIPT passive wrist and hand orthosis. In 2014 7th International Conference on Human System Interactions (HSI) (pp. 188-193). IEEE.
  • [42] Ryser, F., Bützer, T., Held, J. P., Lambercy, O., & Gassert, R. (2017, July). Fully embedded myoelectric control for a wearable robotic hand orthosis. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 615-621). IEEE.
  • [43] Haarman, C. J., Hekman, E. E., Prange, G. B., & Van Der Kooij, H. (2018, August). Joint stiffness compensation for application in the EXTEND hand orthosis. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 677-682). IEEE.
  • [44] Ortner, R., Allison, B. Z., Korisek, G., Gaggl, H., & Pfurtscheller, G. (2010). An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE transactions on neural systems and rehabilitation engineering, 19(1), 1-5.
  • [45] Jeon, H. S., Woo, Y. K., Yi, C. H., Kwon, O. Y., Jung, M. Y., Lee, Y. H., ... & Choi, B. R. (2012). Effect of intensive training with a pring-assisted hand orthosis on movement smoothness in upper extremity following stroke: A pilot clinical trial. Topics in stroke rehabilitation, 19(4), 320-328.
  • [46] King, C. E., Wang, P. T., Mizuta, M., Reinkensmeyer, D. J., Do, A. H., Moromugi, S., & Nenadic, Z. (2011, January). Noninvasive brain-computer interface driven hand orthosis. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5786-5789). IEEE.
  • [47] Stan, A., Irimia, D. C., Botezatu, N. A., & Lupu, R. G. (2015, November). Controlling a hand orthosis by means of P300-based brain computer interface. In 2015 E-Health and Bioengineering Conference (EHB) (pp. 1-4). IEEE.
  • [48] Saharan, L., Sharma, A., de Andrade, M. J., Baughman, R. H., & Tadesse, Y. (2017, April). Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis. In Active and Passive Smart Structures and Integrated Systems 2017 (Vol. 10164, p. 1016428). International Society for Optics and Photonics.
  • [49] Carpi, F., Frediani, G., Gerboni, C., Gemignani, J., & De Rossi, D. (2014). Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Medical engineering & physics, 36(2), 205-211.
  • [50] Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315-322.
  • [51] DiCicco, M., Lucas, L., & Matsuoka, Y. (2004, April). Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1622-1627). ieee.
  • [52] Ferris, D. P., Taylor, M., & Peethambaran, A. (2003, July). An improved ankle-foot orthosis powered by artificial pneumatic muscles. In XIXth Congress of the International Society of Biomechanics, Dunedin, New Zealand.
  • [53] Chin, R., Hsiao-Wecksler, E. T., Loth, E., Kogler, G., Manwaring, S. D., Tyson, S. N., ... & Gilmer, J. N. (2009). A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. Journal of neuroengineering and rehabilitation, 6(1), 1-11.
  • [54] Sawicki, G. S., & Ferris, D. P. (2009). A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of neuroengineering and rehabilitation, 6(1), 1-16.
  • [55] Yamamoto, S., Hagiwara, A., Mizobe, T., Yokoyama, O., & Yasui, T. (2005). Development of an ankle–foot orthosis with an oil damper. Prosthetics and orthotics international, 29(3), 209-219.
  • [56] NAITO, H., AKAZAWA, Y., TAGAYA, K., MATSUMOTO, T., & TANAKA, M. (2009). An ankle-foot orthosis with a variable-resistance ankle joint using a magnetorheological-fluid rotary damper. Journal of Biomechanical Science and Engineering, 4(2), 182-191.
  • [57] Shorter, K. A., Kogler, G. F., Loth, E., Durfee, W. K., & Hsiao-Wecksler, E. T. (2011). A portable powered ankle-foot orthosis for rehabilitation. Journal of Rehabilitation Research & Development, 48(4).
  • [58] Karpe, S., Sahoo, K., Varadharajulu, G., & Kanase, S. (2021, February). Device customization with novel adhesive electrode. In IOP Conference Series: Materials Science and Engineering (Vol. 1091, No. 1, p. 012012). IOP Publishing.
  • [59] Suga, T., Kameyama, O., Ogawa, R., Matsuura, M., & Oka, H. (1998). Newly designed computer controlled knee-ankle-foot orthosis (Intelligent Orthosis). Prosthetics and orthotics international, 22(3), 230-239.
  • [60] Kobayashi, T., Leung, A. K. L., Akazawa, Y., Naito, H., Tanaka, M., & Hutchins, S. W. (2010). Design of an automated device to measure sagittal plane stiffness of an articulated ankle-foot orthosis. Prosthetics and orthotics international, 34(4), 439-448.
  • [61] Liu, Y., Zang, X., Zhang, N., & Wu, M. (2018). Design and evaluation of a wearable powered foot orthosis with metatarsophalangeal joint. Applied bionics and biomechanics, 2018.
  • [62] Polinkovsky, A., Bachmann, R. J., Kern, N. I., & Quinn, R. D. (2012, October). An ankle foot orthosis with insertion point eccentricity control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1603-1608). IEEE.
  • [63] Walbran, M., Turner, K., & McDaid, A. J. (2016). Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint. Cogent Engineering, 3(1), 1227022.
  • [64] Amerinatanzi, A., Zamanian, H., Shayesteh Moghaddam, N., Jahadakbar, A., & Elahinia, M. (2017). Application of the superelastic NiTi spring in ankle foot orthosis (AFO) to create normal ankle joint behavior. Bioengineering, 4(4), 95.
  • [65] Cullell, A., Moreno, J. C., Rocon, E., Forner-Cordero, A., & Pons, J. L. (2009). Biologically based design of an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory, 44(4), 860-872.
  • [66] Banga, H. K., Kalra, P., Belokar, R. M., & Kumar, R. (2020). Customized design and additive manufacturing of kids’ ankle foot orthosis. Rapid Prototyping Journal.
  • [67] Hirai, H., Ozawa, R., Goto, S., Fujigaya, H., Yamasaki, S., Hatanaka, Y., & Kawamura, S. (2006, September). Development of an ankle-foot orthosis with a pneumatic passive element. In ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication (pp. 220-225). IEEE.
  • [68] Kubasad, P. R., Gawande, V. A., Todeti, S. R., Kamat, Y. D., & Vamshi, N. (2020, December). Design and analysis of a passive ankle foot orthosis by using transient structural method. In Journal of Physics: Conference Series (Vol. 1706, No. 1, p. 012203). IOP Publishing.
  • [69] Gil, J., Sánchez-Villamañán, M. C., Gomez, J., Ortiz, A., Pons, J. L., Moreno, J. C., & Del-Ama, A. J. (2018, October). Design and Implementation of a Novel Semi-Active Hybrid Unilateral Stance Control Knee Ankle Foot Orthosis. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5163-5168). IEEE.
  • [70] Oba, T., Kadone, H., Hassan, M., & Suzuki, K. (2019). Robotic ankle–foot orthosis with a variable viscosity link using MR fluid. IEEE/ASME Transactions on Mechatronics, 24(2), 495-504.
  • [71] Blaya, J. A., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on neural systems and rehabilitation engineering, 12(1), 24-31.
  • [72] Telfer, S., Pallari, J., Munguia, J., Dalgarno, K., McGeough, M., & Woodburn, J. (2012). Embracing additive manufacture: implications for foot and ankle orthosis design. BMC musculoskeletal disorders, 13(1), 1-9.
  • [73] Alam, M., Choudhury, I. A., & Mamat, A. B. (2014). Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. The Scientific World Journal, 2014.
  • [74] Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D. H., & Kim, S. J. (2017). Ankle-foot orthosis made by 3D printing technique and automated design software. Applied bionics and biomechanics, 2017.
  • [75] GAUTAM, G. Y., Jain, M. L., & GEHLOT, V. (2021). DESIGN AND ANALYSIS OF THERMOPLASTIC POLYPROPYLENE ANKLE FOOT ORTHOSIS. Journal of Manufacturing Engineering, 16(3), 087-091.
There are 75 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Reviews
Authors

Hamid Asadi Dereshgi 0000-0002-8500-6625

Hüseyin Dal

Dilan Demir

Necip Furkan Türe

Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Asadi Dereshgi, H., Dal, H., Demir, D., Türe, N. F. (2021). Orthoses: A Systematic Review. Journal of Smart Systems Research, 2(2), 135-149.
AMA Asadi Dereshgi H, Dal H, Demir D, Türe NF. Orthoses: A Systematic Review. JoinSSR. December 2021;2(2):135-149.
Chicago Asadi Dereshgi, Hamid, Hüseyin Dal, Dilan Demir, and Necip Furkan Türe. “Orthoses: A Systematic Review”. Journal of Smart Systems Research 2, no. 2 (December 2021): 135-49.
EndNote Asadi Dereshgi H, Dal H, Demir D, Türe NF (December 1, 2021) Orthoses: A Systematic Review. Journal of Smart Systems Research 2 2 135–149.
IEEE H. Asadi Dereshgi, H. Dal, D. Demir, and N. F. Türe, “Orthoses: A Systematic Review”, JoinSSR, vol. 2, no. 2, pp. 135–149, 2021.
ISNAD Asadi Dereshgi, Hamid et al. “Orthoses: A Systematic Review”. Journal of Smart Systems Research 2/2 (December 2021), 135-149.
JAMA Asadi Dereshgi H, Dal H, Demir D, Türe NF. Orthoses: A Systematic Review. JoinSSR. 2021;2:135–149.
MLA Asadi Dereshgi, Hamid et al. “Orthoses: A Systematic Review”. Journal of Smart Systems Research, vol. 2, no. 2, 2021, pp. 135-49.
Vancouver Asadi Dereshgi H, Dal H, Demir D, Türe NF. Orthoses: A Systematic Review. JoinSSR. 2021;2(2):135-49.