Year 2021,
Volume: 2 Issue: 2, 86 - 94, 30.12.2021
Muhammed Ali Pala
,
Murat Erhan Çimen
,
Mustafa Zahid Yıldız
,
Gamze Güney Eskiler
,
Asuman Deveci Özkan
Supporting Institution
Sakarya Uygulamalı Bilimler Üniversitesi
Project Number
2020-01-01-011
Thanks
Bu çalışma Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü 2020-01-01-011 no’lu proje kapsamında desteklenmiştir. Sorumlu yazar Muhammed Ali PALA, BİDEB 2211-C Öncelikli Alanlara Yönelik Yurtiçi Doktora Burs Programı kapsamında tez çalışması desteklenmiş olup, destekleyen TÜBİTAK’a katkılarından dolayı teşekkür ederiz.
References
- C. M. Beaufort, J. C. A. Helmijr, A. M. Piskorz, M. Hoogstraat, and K. Ruigrok-Ritstier, “Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes,” PLoS One, vol. 9, no. 9, p. 103988, Sep. 2014, doi: 10.1371/journal.pone.0103988.
- S. J. Wigmore, K. C. Fearon, K. Sangster, J. P. Maingay, O. J. Garden, and J. A. Ross, “Cytokine regulation of constitutive production of interleukin-8 and -6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer.,” Int. J. Oncol., vol. 21, no. 4, pp. 881–886, 2002, doi: 10.3892/ijo.21.4.881.
- J. Wang and J. Yi, “Background: Two Paradoxical ROS-Manipulation Strategies in Cancer Treatment,” Cancer Biol. Ther., vol. 7, no. 12, pp. 1875–1884, 2008, doi: 10.4161/cbt.7.12.7067.
- F. Joris, D. Valdepérez, B. Pelaz, T. Wang, S. D.-A. biomaterialia, and undefined 2017, “Choose your cell model wisely: the in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling,” Elsevier, Accessed: Jun. 16, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1742706117302246.
- J. Blagg, P. W.-C. cell, and undefined 2017, “Choose and use your chemical probe wisely to explore cancer biology,” Elsevier, Accessed: Jun. 16, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1535610817302556.
- J. Wang, L.-P. Guo, L.-Z. Chen, Y.-X. Zeng, and S. H. Lu, “Identification of Cancer Stem Cell-Like Side Population Cells in Human Nasopharyngeal Carcinoma Cell Line,” AACR, 2007, doi: 10.1158/0008-5472.CAN-06-4343.
- A. Greenbaum et al., “Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods, vol. 9, no. 9, pp. 889–895, 2012, doi: 10.1038/nmeth.2114.
- C. P. Allier et al., “Dynamic quantitative analysis of adherent cell culture by means of lens-free video microscopy,” Sci. Rep., vol. 6, no. 1, p. 59, 2018, doi: 10.1117/12.2289525.
- S. N. A. Morel et al., “Wide-Field Lensfree Imaging of Tissue Slides,” in Advanced Microscopy Techniques IV; and Neurophotonics II, 2015, no. September, p. 95360K, doi: 10.1364/ECBO.2015.95360K.
- M. Euan and O. Aydogan, “Unconventional methods of imaging: computational microscopy and compact implementations,” 2016, Accessed: Feb. 21, 2019. [Online]. Available: https://iopscience.iop.org/article/10.1088/0034-4885/79/7/076001/pdf.
- M. Rempfler et al., “Tracing cell lineages in videos of lens-free microscopy,” Med. Image Anal., vol. 48, pp. 147–161, 2018, doi: 10.1016/j.media.2018.05.009.
- C. P. Allier et al., “Video lensfree microscopy of 2D and 3D culture of cells,” no. April 2016, p. 89471H, 2014, doi: 10.1117/12.2038098.
- B. Pang, L. Lee, and S. Vaithyanathan, “Sentiment Classification using Machine Learning Techniques,” Proc. - Symp. Log. Comput. Sci., no. July, pp. 97–106, 2011, doi: 10.1109/LICS.2011.23.
- M. E. Çimen, Z. Garip Batık, M. A. Pala, B. A. Fuat, and A. Akgul, “Modelling of chaotic motion video with artificial neural networks,” CHAOS TEORY Appl., vol. 1, no. 1, pp. 38–50, 2019.
- H. Geppert, M. Vogt, and J. Bajorath, “Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation,” J. Chem. Inf. Model., vol. 50, no. 2, pp. 205–216, 2010, doi: 10.1021/ci900419k.
- M. A. Pala, M. E. Çimen, Ö. F. Boyraz, M. Z. Yildiz, and A. F. Boz, “Meme Kanserinin Teşhis Edilmesinde Karar Ağacı Ve KNN Algoritmalarının Karşılaştırmalı Başarım Analizi,” Acad. Perspect. Procedia, vol. 2, no. 3, pp. 544–552, 2019, doi: 10.33793/acperpro.02.03.47.
- Z. Ren, Z. Xu, and E. Y. Lam, “End-to-end deep learning framework for digital holographic reconstruction,” Adv. Photonics, vol. 1, no. 01, p. 1, 2019, doi: 10.1117/1.ap.1.1.016004.
- A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object removal by exemplar-based image inpainting,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1200–1212, Sep. 2004, doi: 10.1109/TIP.2004.833105.
Holografik Görüntülerde Kenar Tabanlı Fraktal Özniteliklerin Hücre Canlılık Analizlerinde Başarısı
Year 2021,
Volume: 2 Issue: 2, 86 - 94, 30.12.2021
Muhammed Ali Pala
,
Murat Erhan Çimen
,
Mustafa Zahid Yıldız
,
Gamze Güney Eskiler
,
Asuman Deveci Özkan
Abstract
Hücre kültürlerinin görüntülenmesi ve canlılık analizlerinin yüksek doğruluk ile yapılması etkin ilaçlar geliştirme süreçlerinde oldukça önemlidir. Lenssiz dijital holografik mikroskopi sistemleri hücrelerin görüntülenmesinde ve karakterize edilmesinde yaygın olarak kullanılmaktadır. Bu sistemlerin düşük maliyeti, kullanım kolaylığı ve maliyeti gibi avantajları nedeniyle kaynak sınırlı laboratuvarlar dahil birçok deneysel çalışma sürecin işletilmesinde kullanılmaktadır. Bu çalışma kapsamında MCF-7 meme kanseri hücre kültürlerin canlılık analizlerinde, hücrelerin kenar fraktal özelliklerinin kullanılabileceği gösterilmiştir. Hücrelere ait fraktal boyutlarının çıkarımında farklı kenar bulma yöntemlerinin etkisi farklı makine öğrenmesi yöntemleriyle gösterilmiştir. Elde edilen sonuçlar, hücre canlılık analizlerinde hücre kenar fraktal boyutlarının %80,10 başarı oranında yapılabileceği göstermektedir.
Project Number
2020-01-01-011
References
- C. M. Beaufort, J. C. A. Helmijr, A. M. Piskorz, M. Hoogstraat, and K. Ruigrok-Ritstier, “Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes,” PLoS One, vol. 9, no. 9, p. 103988, Sep. 2014, doi: 10.1371/journal.pone.0103988.
- S. J. Wigmore, K. C. Fearon, K. Sangster, J. P. Maingay, O. J. Garden, and J. A. Ross, “Cytokine regulation of constitutive production of interleukin-8 and -6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer.,” Int. J. Oncol., vol. 21, no. 4, pp. 881–886, 2002, doi: 10.3892/ijo.21.4.881.
- J. Wang and J. Yi, “Background: Two Paradoxical ROS-Manipulation Strategies in Cancer Treatment,” Cancer Biol. Ther., vol. 7, no. 12, pp. 1875–1884, 2008, doi: 10.4161/cbt.7.12.7067.
- F. Joris, D. Valdepérez, B. Pelaz, T. Wang, S. D.-A. biomaterialia, and undefined 2017, “Choose your cell model wisely: the in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling,” Elsevier, Accessed: Jun. 16, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1742706117302246.
- J. Blagg, P. W.-C. cell, and undefined 2017, “Choose and use your chemical probe wisely to explore cancer biology,” Elsevier, Accessed: Jun. 16, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1535610817302556.
- J. Wang, L.-P. Guo, L.-Z. Chen, Y.-X. Zeng, and S. H. Lu, “Identification of Cancer Stem Cell-Like Side Population Cells in Human Nasopharyngeal Carcinoma Cell Line,” AACR, 2007, doi: 10.1158/0008-5472.CAN-06-4343.
- A. Greenbaum et al., “Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods, vol. 9, no. 9, pp. 889–895, 2012, doi: 10.1038/nmeth.2114.
- C. P. Allier et al., “Dynamic quantitative analysis of adherent cell culture by means of lens-free video microscopy,” Sci. Rep., vol. 6, no. 1, p. 59, 2018, doi: 10.1117/12.2289525.
- S. N. A. Morel et al., “Wide-Field Lensfree Imaging of Tissue Slides,” in Advanced Microscopy Techniques IV; and Neurophotonics II, 2015, no. September, p. 95360K, doi: 10.1364/ECBO.2015.95360K.
- M. Euan and O. Aydogan, “Unconventional methods of imaging: computational microscopy and compact implementations,” 2016, Accessed: Feb. 21, 2019. [Online]. Available: https://iopscience.iop.org/article/10.1088/0034-4885/79/7/076001/pdf.
- M. Rempfler et al., “Tracing cell lineages in videos of lens-free microscopy,” Med. Image Anal., vol. 48, pp. 147–161, 2018, doi: 10.1016/j.media.2018.05.009.
- C. P. Allier et al., “Video lensfree microscopy of 2D and 3D culture of cells,” no. April 2016, p. 89471H, 2014, doi: 10.1117/12.2038098.
- B. Pang, L. Lee, and S. Vaithyanathan, “Sentiment Classification using Machine Learning Techniques,” Proc. - Symp. Log. Comput. Sci., no. July, pp. 97–106, 2011, doi: 10.1109/LICS.2011.23.
- M. E. Çimen, Z. Garip Batık, M. A. Pala, B. A. Fuat, and A. Akgul, “Modelling of chaotic motion video with artificial neural networks,” CHAOS TEORY Appl., vol. 1, no. 1, pp. 38–50, 2019.
- H. Geppert, M. Vogt, and J. Bajorath, “Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation,” J. Chem. Inf. Model., vol. 50, no. 2, pp. 205–216, 2010, doi: 10.1021/ci900419k.
- M. A. Pala, M. E. Çimen, Ö. F. Boyraz, M. Z. Yildiz, and A. F. Boz, “Meme Kanserinin Teşhis Edilmesinde Karar Ağacı Ve KNN Algoritmalarının Karşılaştırmalı Başarım Analizi,” Acad. Perspect. Procedia, vol. 2, no. 3, pp. 544–552, 2019, doi: 10.33793/acperpro.02.03.47.
- Z. Ren, Z. Xu, and E. Y. Lam, “End-to-end deep learning framework for digital holographic reconstruction,” Adv. Photonics, vol. 1, no. 01, p. 1, 2019, doi: 10.1117/1.ap.1.1.016004.
- A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object removal by exemplar-based image inpainting,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1200–1212, Sep. 2004, doi: 10.1109/TIP.2004.833105.