Research Article
BibTex RIS Cite

Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study

Year 2021, , 35 - 39, 31.12.2021
https://doi.org/10.51934/jomit.1052710

Abstract

Cerclage wires are regularly hired as fixation gear to resource reposition, enhance alignment and growth fixation stability. In specific femoral shaft, subtrochanteric and periprosthetic fractures gain from cerclage fixation. Also in supracondylar femoral shaft fractures, extra cord cerclages proved to be extra than only a reposition device and accelerated the general power of the osteosynthesis construct. This study tests for the stabilizing effect of different bone fracture angles in with cerclage. Cerclage fixation of a oblique fractures were tested with fracture angles (45°, 55°, 65°). Construct stiffness and displacements were investigated under static loads and compared to the different bone fracture angles. With each of the tested bone fractures, stiffness wasn't significantly for a compare angles. Most reduction in fracture gap movement was achieved by 65° fracture angle, followed by 55° and 45° fractures.
All cerclage wire fixation were generally superior with reduced fracture movements whereas in 65 degree fracture showing the greatest stabilizing effect. Cerclage wire application has emerged as a potential therapeutic for subtrochanteric fractures.

References

  • A. Angelini and • Concetto Battiato, “Past and present of the use of cerclage wires in orthopedics,” Eur. J. Orthop. Surg. Traumatol.
  • K. Gordon, M. Winkler, T. Hofstädter, U. Dorn, and P. Augat, “Managing Vancouver B1 fractures by cerclage system compared to locking plate fixation - a biomechanical study,” Injury, vol. 47 Suppl 2, pp. S51–S57, Jun. 2016.
  • P. Codesido, A. Mejía, J. Riego, and C. Ojeda-Thies, “Subtrochanteric fractures in elderly people treated with intramedullary fixation: quality of life and complications following open reduction and cerclage wiring versus closed reduction.”
  • C. Bliemel et al., “More than a reposition tool: additional wire cerclage leads to increased load to failure in plate osteosynthesis for supracondylar femoral shaft fractures,” Arch. Orthop. Trauma Surg., vol. 141, no. 7, pp. 1197–1205, Jul. 2021.
  • R. J. Boudrieau and K. R. Sinibaldi, “Principles of long bone fracture management.,” Semin. Vet. Med. Surg. (Small Anim)., vol. 7, no. 1, pp. 44–62, 1992.
  • D. P. Akira Takeuchi, “World Small Animal Veterinary Association World Congress Proceedings, 2003,” VIN.com, Jul. 2014.
  • “Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry | Elsevier Enhanced Reader.” [Online]. Available: https://reader.elsevier.com/reader/sd/pii/S0021929009005582?token=687D07D3604D056188B9CAB6DDD98FFA96CBA761AB7294C7FBD2885A2544FB6A43D9FD59482B9AC73BF37058C93BEC76&originRegion=eu-west-1&originCreation=20211230094228. [Accessed: 30-Dec-2021].
  • G. E. Cook et al., “Biomechanical optimization of the angle and position for surgical implantation of a straight short stem hip implant,” Med. Eng. Phys., vol. 39, pp. 23–30, Jan. 2017.
  • V. M. M. Lopes, M. A. Neto, A. M. Amaro, L. M. Roseiro, and M. F. Paulino, “FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels,” Med. Eng. Phys., vol. 46, pp. 96–109, Aug. 2017.
  • J. M. Goffin, P. Pankaj, and A. H. Simpson, “The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study,” J. Orthop. Res., vol. 31, no. 4, pp. 596–600, Apr. 2013.
  • M. Nienhaus, I. Zderic, D. Wahl, B. Gueorguiev, and P. M. Rommens, “A locked intraosseous nail for transverse patellar fractures: A biomechanical comparison with tension band wiring through cannulated screws,” J. Bone Jt. Surg. - Am. Vol., vol. 100, no. 12, p. E83, Jun. 2018.
  • H. S. Matloub, P. L. Jensen, J. R. Sanger, B. K. Grunert, and N. J. Yousif, “Spiral Fracture Fixation Techniques: A biomechanical study,” http://dx.doi.org/10.1016/0266-7681(93)90162-9, vol. 18, no. 4, pp. 515–519, Aug. 2016.
  • G. Meys et al., “A protocol for permissive weight-bearing during allied health therapy in surgically treated fractures of the pelvis and lower extremities,” J. Rehabil. Med., vol. 51, no. 4, pp. 290–297, 2019.
  • N. Dehghan et al., “Early weightbearing and range of motion versus non-weightbearing and immobilization after open reduction and internal fixation of unstable ankle fractures: A randomized controlled trial,” J. Orthop. Trauma, vol. 30, no. 7, pp. 345–352, Jul. 2016.

Serklaj Kablolamada Farklı Subtrokanterik Kemik Kırılma Açılarının Biyomekanik Karşılaştırılması: Sonlu Eleman Çalışması

Year 2021, , 35 - 39, 31.12.2021
https://doi.org/10.51934/jomit.1052710

Abstract

Serklaj telleri, yeniden konumlandırmaya yardımcı olmak, hizalamayı iyileştirmek ve sabitleme stabilitesini artırmak için sabitleme araçları olarak sıklıkla kullanılır. Özellikle femur şaftı, subtrokanterik ve periprostetik kırıklar serklaj fiksasyonundan yararlanır. Ayrıca suprakondiler femur şaft kırıklarında, ek olarak tel serklajların tespit aracından daha fazlası olduğu ve osteosentez yapısının genel mukavvemeti arttırdığı kanıtlanmıştır. Bu çalışma, serklaj ile farklı kemik kırılma açılarının stabilize edici etkisini test etmektedir. Oblik kırıkların serklaj fiksasyonu kırık açıları ile test edildi (45°, 55°, 65°). Yapı rijitliği ve yer değiştirmeler, statik yükler altında incelendi ve farklı kemik kırılma açılarıyla karşılaştırıldı. Test edilen kemik kırıklarının her birinde sertlik, karşılaştırma açılarında anlamlı bulunmadı. Kırık boşluğu hareketindeki en azalma, 65 ° kırılma açısı ile sağlandı, bunu 55° ve 45° kırıklar izledi.
Tüm serklaj teli fiksasyonu, kırık hareketlerini azaltmış ve genel olarak rijit bulunmasının yanında, en büyük stabilize edici etkiyi 65 derecelik kırıkta gösterdi. Serklaj teli uygulaması, subtrokanterik kırıklar için potansiyel bir terapötik olarak ortaya çıkmıştır.

References

  • A. Angelini and • Concetto Battiato, “Past and present of the use of cerclage wires in orthopedics,” Eur. J. Orthop. Surg. Traumatol.
  • K. Gordon, M. Winkler, T. Hofstädter, U. Dorn, and P. Augat, “Managing Vancouver B1 fractures by cerclage system compared to locking plate fixation - a biomechanical study,” Injury, vol. 47 Suppl 2, pp. S51–S57, Jun. 2016.
  • P. Codesido, A. Mejía, J. Riego, and C. Ojeda-Thies, “Subtrochanteric fractures in elderly people treated with intramedullary fixation: quality of life and complications following open reduction and cerclage wiring versus closed reduction.”
  • C. Bliemel et al., “More than a reposition tool: additional wire cerclage leads to increased load to failure in plate osteosynthesis for supracondylar femoral shaft fractures,” Arch. Orthop. Trauma Surg., vol. 141, no. 7, pp. 1197–1205, Jul. 2021.
  • R. J. Boudrieau and K. R. Sinibaldi, “Principles of long bone fracture management.,” Semin. Vet. Med. Surg. (Small Anim)., vol. 7, no. 1, pp. 44–62, 1992.
  • D. P. Akira Takeuchi, “World Small Animal Veterinary Association World Congress Proceedings, 2003,” VIN.com, Jul. 2014.
  • “Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry | Elsevier Enhanced Reader.” [Online]. Available: https://reader.elsevier.com/reader/sd/pii/S0021929009005582?token=687D07D3604D056188B9CAB6DDD98FFA96CBA761AB7294C7FBD2885A2544FB6A43D9FD59482B9AC73BF37058C93BEC76&originRegion=eu-west-1&originCreation=20211230094228. [Accessed: 30-Dec-2021].
  • G. E. Cook et al., “Biomechanical optimization of the angle and position for surgical implantation of a straight short stem hip implant,” Med. Eng. Phys., vol. 39, pp. 23–30, Jan. 2017.
  • V. M. M. Lopes, M. A. Neto, A. M. Amaro, L. M. Roseiro, and M. F. Paulino, “FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels,” Med. Eng. Phys., vol. 46, pp. 96–109, Aug. 2017.
  • J. M. Goffin, P. Pankaj, and A. H. Simpson, “The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study,” J. Orthop. Res., vol. 31, no. 4, pp. 596–600, Apr. 2013.
  • M. Nienhaus, I. Zderic, D. Wahl, B. Gueorguiev, and P. M. Rommens, “A locked intraosseous nail for transverse patellar fractures: A biomechanical comparison with tension band wiring through cannulated screws,” J. Bone Jt. Surg. - Am. Vol., vol. 100, no. 12, p. E83, Jun. 2018.
  • H. S. Matloub, P. L. Jensen, J. R. Sanger, B. K. Grunert, and N. J. Yousif, “Spiral Fracture Fixation Techniques: A biomechanical study,” http://dx.doi.org/10.1016/0266-7681(93)90162-9, vol. 18, no. 4, pp. 515–519, Aug. 2016.
  • G. Meys et al., “A protocol for permissive weight-bearing during allied health therapy in surgically treated fractures of the pelvis and lower extremities,” J. Rehabil. Med., vol. 51, no. 4, pp. 290–297, 2019.
  • N. Dehghan et al., “Early weightbearing and range of motion versus non-weightbearing and immobilization after open reduction and internal fixation of unstable ankle fractures: A randomized controlled trial,” J. Orthop. Trauma, vol. 30, no. 7, pp. 345–352, Jul. 2016.
There are 14 citations in total.

Details

Primary Language English
Subjects Surgery, Biomedical Engineering, Biomaterial
Journal Section Research Articles
Authors

R. Bugra Husemoglu 0000-0003-1979-160X

Hasan Havıtçıoğlu 0000-0001-8169-3539

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Husemoglu, R. B., & Havıtçıoğlu, H. (2021). Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study. Journal of Medical Innovation and Technology, 3(2), 35-39. https://doi.org/10.51934/jomit.1052710
AMA Husemoglu RB, Havıtçıoğlu H. Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study. Journal of Medical Innovation and Technology. December 2021;3(2):35-39. doi:10.51934/jomit.1052710
Chicago Husemoglu, R. Bugra, and Hasan Havıtçıoğlu. “Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study”. Journal of Medical Innovation and Technology 3, no. 2 (December 2021): 35-39. https://doi.org/10.51934/jomit.1052710.
EndNote Husemoglu RB, Havıtçıoğlu H (December 1, 2021) Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study. Journal of Medical Innovation and Technology 3 2 35–39.
IEEE R. B. Husemoglu and H. Havıtçıoğlu, “Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study”, Journal of Medical Innovation and Technology, vol. 3, no. 2, pp. 35–39, 2021, doi: 10.51934/jomit.1052710.
ISNAD Husemoglu, R. Bugra - Havıtçıoğlu, Hasan. “Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study”. Journal of Medical Innovation and Technology 3/2 (December 2021), 35-39. https://doi.org/10.51934/jomit.1052710.
JAMA Husemoglu RB, Havıtçıoğlu H. Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study. Journal of Medical Innovation and Technology. 2021;3:35–39.
MLA Husemoglu, R. Bugra and Hasan Havıtçıoğlu. “Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study”. Journal of Medical Innovation and Technology, vol. 3, no. 2, 2021, pp. 35-39, doi:10.51934/jomit.1052710.
Vancouver Husemoglu RB, Havıtçıoğlu H. Biomechanical Comparison of Different Subtrochanteric Bone Fracture Angles in Cerclage Wiring: Finite Element Study. Journal of Medical Innovation and Technology. 2021;3(2):35-9.