Research Article
BibTex RIS Cite

Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro

Year 2021, Volume: 3 Issue: 1, 7 - 13, 07.07.2021
https://doi.org/10.51934/jomit.957164

Abstract

Regenerative medicine is a scientific field that improves and repairs diseased and injured tissues. Three-dimensional (3D) printing is an innovative technology that provides a new application field for regenerative medicine. 3D printed scaffolds by programming pore sizes and shapes serve as a temporary basis for cells until the natural extracellular matrix (ECM) is reconstructed. Dermal fibroblasts are mesenchymal cells located in the dermal skin layer that produce and organize ECM components. They play an essential role in skin wound healing and fibrosis. The aim of this study is to analyze the viability, adhesion, distribution, and collagen IV expression of human dermal fibroblasts (HDFs) seeded on 3D printed polylactic acid (PLA), polyethylene terephthalate (PET), and poly-ε-caprolactone (PCL) scaffolds in vitro. HDFs were seeded on scaffolds or tissue culture plastic plates as control and were cultured for 1 and 3 days. 3D PLA, PCL, and PET scaffolds were prepared using a custom made fused deposition modeling printer. The cell viability was measured by WST-1 assay on days 1 and 3. The cell adhesion was evaluated by scanning electron microscopy (SEM). The distribution was analyzed by hematoxylin and eosin (H&E) staining. Collagen IV expression was analyzed by immunohistochemical (IHC) staining. On day 1, the viability of HDFs on the 3D PLA scaffolds was significantly higher than PCL scaffolds. On day 3, the viability of HDFs on 3D PLA and PET scaffolds was significantly higher than PCL scaffolds. SEM images showed that HDFs on 3D PLA scaffolds attached the surfaces, filled the interfiber gaps and maintained their tissue specific morphology on day 3 compared to PCL and PET scaffolds. Histological images stained with H&E demonstrated that the distribution of HDFs on 3D PLA scaffolds was uniform on days 1 and 3. Collagen IV staining was more intense in HDFs on 3D PLA scaffolds on days 1 and 3. This study shows that 3D PLA scaffolds create a appropriate environment for cell viability, adhesion, distribution and may provide a high advantage in skin tissue regeneration.

References

  • Watt FM, Fujiwara H. Cell-Extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011;3(4):1-14.
  • Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2015;25(2):92-9.
  • Witherel CE, Abebayehu D, Barker TH, Kara LS. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv Healthc Mater 2019;8(4):1-16.
  • Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater Sci Eng C 2014;34(1):130-9.
  • Aladdad AM, Amer MH, Sidney L, et al. A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells. Acta Biomaterialia 2019;95:427-38.
  • Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnolog Bioeng 2020;117(4):1148-58.
  • Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (pla) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016;107: 163-75.
  • Bridge JC, Aylott JW, Brightling CE, et al. Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall. J Vis Exp 2015;101:e52986.
  • Pinzon-Garcia AD, Cassini-Vieira P, Ribeiro CC, et al. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res Part B Appl. Biomater 2017;105:1938-49.
  • Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5(2): 025001.
  • Huerta RR, Silva E, Ekaette I, El-Bialy T, Saldaña MDA. High-Intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrason Sonochem 2020;64:104759.
  • Chen WC, Wei YH, Chu IM, Yao CL. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. J Tissue Eng Regen Med 2013;7(8):665-72.
  • Griffin MF, Naderi N, Kalaskar DM, Seifalian AM, Butler PE. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res Ther 2019;10(1):1-14.
  • Nagarajan S, Reddy BSR. Bio-absorbable polymers in implantation - an overview. J Sci Ind Res 2009;8:993-1009.
  • Theryo G, Jing F, Pitet LM, Hillmyer MA. Tough polylactide graft copolymers. Macromolecules 2010; 43:7394-7.
  • Karabay U, Husemoglu RB, Egrilmez MY, Havitcioglu H. 3D printed polylactic acid scaffold for dermal tissue engineering application : the fibroblast proliferation in vitro. Journal of Medical Innovation and Technology 2019;1(2):51-6.
  • Wang J, Huang N, Yang P, Leng YX, Sun H, Liu ZY, Chu PK. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials 2004;25:3163-70.
  • Zhang X (Edited by). Science and Principles of Biodegradable and Bioresorbable Medical Polymers. In: Zhang X, Peng X, Zhang S. Synthetic biodegradable medical polymers: polymer blends. Woodhead Publishing, 2017;217-54.
  • Petretta M, Gambardella A, Boi M, et al. Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology (Basel) 2021;10(5):398.
  • Patrício T, Glória A, Bártolo P. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng Trans 2013;32:1645-50.
  • Hewitt E, Mros S, McConnell M, Cabral JD and Ali A. Melt-Electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials 2019;4(5): 055013.
  • ÖG Geyik, Nalbant B, Hüsemoğlu RB, Yüce Z, Ünek T, Havıtçıoğlu H. Investigation of Surface Adhesion of MCF-7 Cells in 3D Printed PET and PLA Tissue Scaffold Models. Journal of Medical Innovation and Technology 2019;1(2):45-50.
  • Hasegawa H, Naito I, Nakano K, Momota R, Nishida K, Taguchi T, et al. The distributions of type IV collagen alpha chains in basement membranes of human epidermis and skin appendages. Arch Histol Cytol 2007;70(4):255-65.
  • Olsen DR, Peltonen J, Jaakkola S, Chu ML, Uitto J. Collagen gene expression by cultured human skin fibroblasts. Abundant steady-state levels of type VI procollagen messenger RNAs. J Clin Invest 1989;83(3): 791-5.
  • Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, et al. The time-dependent rearrangement of the epithelial basement membrane in human skin wounds-immunohistochemical localization of Collagen IV and VII. Int J Legal Med 1992;105:93-7.
Year 2021, Volume: 3 Issue: 1, 7 - 13, 07.07.2021
https://doi.org/10.51934/jomit.957164

Abstract

Rejeneratif tıp, hastalıklı ve yaralı dokuları iyileştiren ve onaran bir bilimsel alandır. 3 boyutlu (3B) baskı, rejeneratif tıbba yeni bir uygulama alanı sağlayan yenilikçi bir teknolojidir. Gözenek boyutları ve şekilleri programlanarak 3B baskı ile üretilen doku iskeleleri, doğal hücre dışı matriks (ECM) yeniden yapılandırılıncaya kadar hücreler için geçici bir destek görevi görmektedir. Dermal fibroblastlar, ECM bileşenlerinin üretimi ve düzenlenmesinde rol oynayan dermal deri tabakasında bulunan mezenkimal hücrelerdir. Dermal fibroblastlar yara iyileşmesi ve deri fibrozisinde temel rol oynayan hücrelerdir. Bu çalışmanın amacı, 3B baskılı polilaktik asit (PLA), polietilen tereftalat (PET) ve poli-ε-kaprolakton (PCL) doku iskelelerine ekilen insan dermal fibroblastlarının (HDF) canlılığı, adezyonu, dağılımı ve kollajen IV ekspresyonlarının in vitro analiz edilmesidir. Doku iskelelerine ve kontrol grubu olarak doku kültür plastik plakalara ekilen HDF’ler 1 ve 3 gün boyunca kültüre edilmiştir. Doku iskeleleri özel tasarım birleştirmeli yığma modellemesi (FDM) ile 3B yazıcı kullanılarak hazırlanmıştır. Hücre canlılığı WST1 ile, hücre adezyonu taramalı elektron mikroskobisi (SEM) ile, hücre dağılımı hematoksilen & eozin (H&E) ve kollajen IV ekspresyonu immünohistokimyasal (IHC) boyamalar ile analiz edilmiştir. 1. günde 3B PLA iskelelerindeki HDF’lerin canlılığı, PCL iskelelerindeki HDF’lerden istatiksel olarak anlamlı yüksek bulunmuştur. 3. günde ise, 3B PLA ve PET iskelelerdeki HDF'lerin canlılığı PCL iskelelerindeki HDF’lerden istatiksel olarak anlamlı yüksek tespit edilmiştir. SEM görüntüleri, 3B PLA iskelelerdeki HDF'lerin yüzeylere bağlandığını, fiberler arası boşlukları doldurduğunu, PCL ve PET iskelelerine kıyasla özellikle 3. günde dokuya özgü morfolojilerini koruduğunu göstermiştir. HDF'lerin 3B PLA iskelelerindeki dağılımı 1. ve 3. günlerde geniş yayılım göstermiştir. 3B PLA iskelelerindeki HDF'lerde kollajen IV boyamasının 1. ve 3. günlerde daha şiddetli olduğu gözlenmiştir. Sonuçlarımız, 3B PLA iskelelerinin hücre canlılığı, adhezyonu, dağılımı için uygun bir ortam oluşturduğunu ve deri rejenerasyonunda avantaj sağlayabileceğini göstermektedir.

References

  • Watt FM, Fujiwara H. Cell-Extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011;3(4):1-14.
  • Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2015;25(2):92-9.
  • Witherel CE, Abebayehu D, Barker TH, Kara LS. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv Healthc Mater 2019;8(4):1-16.
  • Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater Sci Eng C 2014;34(1):130-9.
  • Aladdad AM, Amer MH, Sidney L, et al. A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells. Acta Biomaterialia 2019;95:427-38.
  • Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnolog Bioeng 2020;117(4):1148-58.
  • Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (pla) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016;107: 163-75.
  • Bridge JC, Aylott JW, Brightling CE, et al. Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall. J Vis Exp 2015;101:e52986.
  • Pinzon-Garcia AD, Cassini-Vieira P, Ribeiro CC, et al. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res Part B Appl. Biomater 2017;105:1938-49.
  • Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5(2): 025001.
  • Huerta RR, Silva E, Ekaette I, El-Bialy T, Saldaña MDA. High-Intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrason Sonochem 2020;64:104759.
  • Chen WC, Wei YH, Chu IM, Yao CL. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. J Tissue Eng Regen Med 2013;7(8):665-72.
  • Griffin MF, Naderi N, Kalaskar DM, Seifalian AM, Butler PE. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res Ther 2019;10(1):1-14.
  • Nagarajan S, Reddy BSR. Bio-absorbable polymers in implantation - an overview. J Sci Ind Res 2009;8:993-1009.
  • Theryo G, Jing F, Pitet LM, Hillmyer MA. Tough polylactide graft copolymers. Macromolecules 2010; 43:7394-7.
  • Karabay U, Husemoglu RB, Egrilmez MY, Havitcioglu H. 3D printed polylactic acid scaffold for dermal tissue engineering application : the fibroblast proliferation in vitro. Journal of Medical Innovation and Technology 2019;1(2):51-6.
  • Wang J, Huang N, Yang P, Leng YX, Sun H, Liu ZY, Chu PK. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials 2004;25:3163-70.
  • Zhang X (Edited by). Science and Principles of Biodegradable and Bioresorbable Medical Polymers. In: Zhang X, Peng X, Zhang S. Synthetic biodegradable medical polymers: polymer blends. Woodhead Publishing, 2017;217-54.
  • Petretta M, Gambardella A, Boi M, et al. Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology (Basel) 2021;10(5):398.
  • Patrício T, Glória A, Bártolo P. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng Trans 2013;32:1645-50.
  • Hewitt E, Mros S, McConnell M, Cabral JD and Ali A. Melt-Electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials 2019;4(5): 055013.
  • ÖG Geyik, Nalbant B, Hüsemoğlu RB, Yüce Z, Ünek T, Havıtçıoğlu H. Investigation of Surface Adhesion of MCF-7 Cells in 3D Printed PET and PLA Tissue Scaffold Models. Journal of Medical Innovation and Technology 2019;1(2):45-50.
  • Hasegawa H, Naito I, Nakano K, Momota R, Nishida K, Taguchi T, et al. The distributions of type IV collagen alpha chains in basement membranes of human epidermis and skin appendages. Arch Histol Cytol 2007;70(4):255-65.
  • Olsen DR, Peltonen J, Jaakkola S, Chu ML, Uitto J. Collagen gene expression by cultured human skin fibroblasts. Abundant steady-state levels of type VI procollagen messenger RNAs. J Clin Invest 1989;83(3): 791-5.
  • Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, et al. The time-dependent rearrangement of the epithelial basement membrane in human skin wounds-immunohistochemical localization of Collagen IV and VII. Int J Legal Med 1992;105:93-7.
There are 25 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering, Tissue Engineering, Biomaterial
Journal Section Research Articles
Authors

Ufkay Karabay 0000-0001-8608-1865

R. Bugra Husemoglu 0000-0003-1979-160X

Mehtap Yuksel Egrılmez 0000-0002-3570-1865

Selma Aydemir 0000-0003-1263-9998

Başak Baykara 0000-0002-4178-2235

Serhat Cagiral 0000-0002-1295-1749

Hasan Havıtçıoğlu 0000-0001-8169-3539

Publication Date July 7, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Karabay, U., Husemoglu, R. B., Yuksel Egrılmez, M., Aydemir, S., et al. (2021). Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro. Journal of Medical Innovation and Technology, 3(1), 7-13. https://doi.org/10.51934/jomit.957164
AMA Karabay U, Husemoglu RB, Yuksel Egrılmez M, Aydemir S, Baykara B, Cagiral S, Havıtçıoğlu H. Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro. Journal of Medical Innovation and Technology. July 2021;3(1):7-13. doi:10.51934/jomit.957164
Chicago Karabay, Ufkay, R. Bugra Husemoglu, Mehtap Yuksel Egrılmez, Selma Aydemir, Başak Baykara, Serhat Cagiral, and Hasan Havıtçıoğlu. “Comparison of the Biological Behaviour of Human Dermal Fibroblasts Seeded on 3D Printed Polylactic Acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in Vitro”. Journal of Medical Innovation and Technology 3, no. 1 (July 2021): 7-13. https://doi.org/10.51934/jomit.957164.
EndNote Karabay U, Husemoglu RB, Yuksel Egrılmez M, Aydemir S, Baykara B, Cagiral S, Havıtçıoğlu H (July 1, 2021) Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro. Journal of Medical Innovation and Technology 3 1 7–13.
IEEE U. Karabay, “Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro”, Journal of Medical Innovation and Technology, vol. 3, no. 1, pp. 7–13, 2021, doi: 10.51934/jomit.957164.
ISNAD Karabay, Ufkay et al. “Comparison of the Biological Behaviour of Human Dermal Fibroblasts Seeded on 3D Printed Polylactic Acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in Vitro”. Journal of Medical Innovation and Technology 3/1 (July 2021), 7-13. https://doi.org/10.51934/jomit.957164.
JAMA Karabay U, Husemoglu RB, Yuksel Egrılmez M, Aydemir S, Baykara B, Cagiral S, Havıtçıoğlu H. Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro. Journal of Medical Innovation and Technology. 2021;3:7–13.
MLA Karabay, Ufkay et al. “Comparison of the Biological Behaviour of Human Dermal Fibroblasts Seeded on 3D Printed Polylactic Acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in Vitro”. Journal of Medical Innovation and Technology, vol. 3, no. 1, 2021, pp. 7-13, doi:10.51934/jomit.957164.
Vancouver Karabay U, Husemoglu RB, Yuksel Egrılmez M, Aydemir S, Baykara B, Cagiral S, Havıtçıoğlu H. Comparison of the Biological Behaviour of Human Dermal Fibroblasts seeded on 3D Printed Polylactic acid, Polycaprolactone and Polyethylene Terephthalate Scaffolds in vitro. Journal of Medical Innovation and Technology. 2021;3(1):7-13.