Case Report
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 1, 14 - 17, 07.07.2021
https://doi.org/10.51934/jomit.958365

Abstract

Son yıllarda kullanımı gittikçe yaygınlaşan üç boyutlu görüntüleme ve modelleme yöntemleri, iki boyutlu çalışmaların yerini almaktadır. Tıp alanında da yaygın kullanımı olan üç boyutlu görüntüler özellikle nöroşirurji pratiğinde cerrahi açıdan kolaylıklar sağlamaktadır. Üç boyutlu görüntüler esas alınarak epilepsi, kranioplasti, vasküler ve intrakranial lezyonların cerrahisi şekilllendirilebilmektedir.
Daha önceki ameliyata ya da travmaya bağlı olarak kemik doku kaybının yerine konup, beyin dokusunun korunması kranioplastinin asıl amacıdır. Bu amaçla otolog greftler kullanılabileceği gibi polimetilmetakrilat gibi maddeler de kullanılmaktadır.
Bu çalışmada kranioplasti planlanan hasta için üç boyutlu yazıcı kullanılarak PLA kalıbı üretilmiştir ve PMMA ile kranioplasti işlemi gerçekleştirilmiştir. Hastanın perop gözleminde kalıbın tam olarak oturduğu görülmüştür. Hasta takiplerinde kozmetik açıdan memnundu.
Teknolojinin ilerlemesi ile birlikte üç boyutlu yazıcıların nöroşirurji pratiğinde kullanımı daha da artacak, kişisel tedavi yöntemleri geliştirilecek, daha az maliyet ve komplikasyon oranları ile daha iyi sonuçlar elde edilecektir.

References

  • Gooch, M.R., et al., Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus, 2009. 26(6): p. E9.
  • Moreira-Gonzalez, A., et al., Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg, 2003. 14(2): p. 144-53.
  • Bishop, A., et al., Mitigation of peroxynitrite-mediated nitric oxide (NO) toxicity as a mechanism of induced adaptive NO resistance in the CNS. J Neurochem, 2009. 109(1): p. 74-84.
  • Manson, P.N., W.A. Crawley, and J.E. Hoopes, Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg, 1986. 77(6): p. 888-904.
  • Wallace, R.D., C. Salt, and P. Konofaos, Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing. J Craniofac Surg, 2015. 26(5): p. 1551-7.
  • Marchac, D. and A. Greensmith, Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. J Plast Reconstr Aesthet Surg, 2008. 61(7): p. 744-52; discussion 753.
  • Piitulainen, J.M., et al., Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg, 2015. 83(5): p. 708-14.
  • Marbacher, S., et al., Intraoperative template-molded bone flap reconstruction for patient-specific cranioplasty. Neurosurg Rev, 2012. 35(4): p. 527-35; discussion 535.
  • Chrzan, R., et al., Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit, 2012. 18(1): p. MT1-6.
  • Wind, J.J., et al., Immediate titanium mesh cranioplasty for treatment of postcraniotomy infections. World Neurosurg, 2013. 79(1): p. 207 e11-3.
  • Oishi, M., et al., Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg, 2013. 119(1): p. 94-105.
  • Kim, B.J., et al., Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc, 2012. 52(6): p. 541-6.
  • Marlier, B., et al., Reconstruction of cranioplasty using medpor porouspolyethylene implant. Neurochirurgie, 2017. 63(6): p. 468-472.

Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case

Year 2021, Volume: 3 Issue: 1, 14 - 17, 07.07.2021
https://doi.org/10.51934/jomit.958365

Abstract

In recent years, the use of three-dimensional imaging and modeling methods has become increasingly frequent, replacing two-dimensional studies. Three-dimensional images, which are widely used in medicine, provide surgical facilities, especially in neurosurgical practice. Surgery for epilepsy, cranioplasty, vascular and intracranial lesions could be shaped based on three-dimensional images.
The main purpose of cranioplasty is to replace bone tissue loss due to previous surgery or trauma to protect brain tissue. For this purpose, autologous grafts could be used as well as materials such as polymethylmethacrylate.
In this study, a PLA mold was produced using a three-dimensional printer for the patient who was planned for cranioplasty and cranioplasty was performed with PMMA. The perioperative observation of the patient revealed that the mold was fully seated. The patient was satisfied cosmetically in the follow-up.
With the advancement of technology, the use of three-dimensional printers in neurosurgery practice will further increase, individual treatment methods will be developed and better results will be obtained with less cost and complication rates.

References

  • Gooch, M.R., et al., Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus, 2009. 26(6): p. E9.
  • Moreira-Gonzalez, A., et al., Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg, 2003. 14(2): p. 144-53.
  • Bishop, A., et al., Mitigation of peroxynitrite-mediated nitric oxide (NO) toxicity as a mechanism of induced adaptive NO resistance in the CNS. J Neurochem, 2009. 109(1): p. 74-84.
  • Manson, P.N., W.A. Crawley, and J.E. Hoopes, Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg, 1986. 77(6): p. 888-904.
  • Wallace, R.D., C. Salt, and P. Konofaos, Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing. J Craniofac Surg, 2015. 26(5): p. 1551-7.
  • Marchac, D. and A. Greensmith, Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. J Plast Reconstr Aesthet Surg, 2008. 61(7): p. 744-52; discussion 753.
  • Piitulainen, J.M., et al., Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg, 2015. 83(5): p. 708-14.
  • Marbacher, S., et al., Intraoperative template-molded bone flap reconstruction for patient-specific cranioplasty. Neurosurg Rev, 2012. 35(4): p. 527-35; discussion 535.
  • Chrzan, R., et al., Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit, 2012. 18(1): p. MT1-6.
  • Wind, J.J., et al., Immediate titanium mesh cranioplasty for treatment of postcraniotomy infections. World Neurosurg, 2013. 79(1): p. 207 e11-3.
  • Oishi, M., et al., Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg, 2013. 119(1): p. 94-105.
  • Kim, B.J., et al., Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc, 2012. 52(6): p. 541-6.
  • Marlier, B., et al., Reconstruction of cranioplasty using medpor porouspolyethylene implant. Neurochirurgie, 2017. 63(6): p. 468-472.
There are 13 citations in total.

Details

Primary Language English
Subjects Surgery, Biomedical Engineering
Journal Section Case Report
Authors

Gökhan Gürkan 0000-0003-1839-1014

R. Bugra Husemoglu 0000-0003-1979-160X

Nurullah Yuceer 0000-0003-3509-9939

Publication Date July 7, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Gürkan, G., Husemoglu, R. B., & Yuceer, N. (2021). Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case. Journal of Medical Innovation and Technology, 3(1), 14-17. https://doi.org/10.51934/jomit.958365
AMA Gürkan G, Husemoglu RB, Yuceer N. Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case. Journal of Medical Innovation and Technology. July 2021;3(1):14-17. doi:10.51934/jomit.958365
Chicago Gürkan, Gökhan, R. Bugra Husemoglu, and Nurullah Yuceer. “Polymethylmethacrylate Cranioplasty Implant Customized Using a Polylactic Acid Mold and Prepared With a 3D Printer: An Example Case”. Journal of Medical Innovation and Technology 3, no. 1 (July 2021): 14-17. https://doi.org/10.51934/jomit.958365.
EndNote Gürkan G, Husemoglu RB, Yuceer N (July 1, 2021) Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case. Journal of Medical Innovation and Technology 3 1 14–17.
IEEE G. Gürkan, R. B. Husemoglu, and N. Yuceer, “Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case”, Journal of Medical Innovation and Technology, vol. 3, no. 1, pp. 14–17, 2021, doi: 10.51934/jomit.958365.
ISNAD Gürkan, Gökhan et al. “Polymethylmethacrylate Cranioplasty Implant Customized Using a Polylactic Acid Mold and Prepared With a 3D Printer: An Example Case”. Journal of Medical Innovation and Technology 3/1 (July 2021), 14-17. https://doi.org/10.51934/jomit.958365.
JAMA Gürkan G, Husemoglu RB, Yuceer N. Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case. Journal of Medical Innovation and Technology. 2021;3:14–17.
MLA Gürkan, Gökhan et al. “Polymethylmethacrylate Cranioplasty Implant Customized Using a Polylactic Acid Mold and Prepared With a 3D Printer: An Example Case”. Journal of Medical Innovation and Technology, vol. 3, no. 1, 2021, pp. 14-17, doi:10.51934/jomit.958365.
Vancouver Gürkan G, Husemoglu RB, Yuceer N. Polymethylmethacrylate cranioplasty implant customized using a polylactic acid mold and prepared with a 3D printer: an example case. Journal of Medical Innovation and Technology. 2021;3(1):14-7.