Research Article
BibTex RIS Cite

Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results

Year 2021, Volume: 3 Issue: 2, 28 - 34, 31.12.2021
https://doi.org/10.51934/jomit.1037540

Abstract

Purpose: In this study, it is aimed to evaluate the radiological tissue equivalency of different 3D printed samples obtained at different printing temperatures, flow rates and infill rates.
Materials and Methods: Ultimaker 3 Extended 3D printer and LW-PLA filament were used witin the scope of this study. A total of 18 cylinders were printed by using 3 different printing temperatures of 195°C, 200oC and 205oC, 3 different flow rates of 60%, 80% and 100%, and 2 different infilling rates of 90% and 100%. Each sample is obtained 1 cm in diameter and 3 cm in height. After calculating the densities of the samples, they were imaged by a Philips Brilliance 128-slice computed tomography scanner. In the images, the average Hounsfield Unit values and the standard deviations of these values were recorded at 5 different axial positions for each sample. The mean HU and standard deviation values recorded over 5 slices were evaluated according to the printing parameters.
Results: Density of the samples are obtained between 0.63 g/cm3 and 1.19 g/cm3. It was observed that the density of the samples were directly proportional to the flow rate and the infill rate. In addition, the average Hounsfield Unit values of the samples varied between -450 and +73. On the other hand, the standard deviation values were recorded between ±6 and ±25. It was observed that the mean Hounsfield Unit values increased with increasing temperature, flow rate and infill rate. The standard deviation values decreased with increasing printing temperatures.
Conclusion: Considering the mean Hounsfield Unit values of different tissues imaged in routine computed tomography examinations, it is concluded that the samples obtained at different printing parameters using LW-PLA filament may have radiological properties that can represent many soft tissues.

Supporting Institution

TÜBİTAK

Project Number

120F054

Thanks

This study is part of a project which is financially supported by 1005 - National New Ideas And New Products Research Funding Program, TUBITAK. The authors hereby appreciate this opportunity they are provided with.

References

  • Tamay DG, Usal TD, Alagoz AS, Yucel D, Hasirci D, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology 2019;7:164.
  • C. Lee Ventola. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014;39(10):704–11.
  • Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat. 2019; 18:1533033819870208.
  • Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740–60.
  • Kalender WA. Computed tomography: fundamentals, system technology image quality, applications. 3rd edition, Paris: Publicis, 2011.
  • Kamalian S, Lev MH, Gupta AR. Handbook of Clinical Neurology, Neuroimaging Part 1.In: Computed tomography imaging and angiography – principles. Amsterdam: Elsevier, 2016:3-20.
  • Kairn T, Crowe SB, Markwell T. Use of 3D Printed Materials as Tissue-Equivalent Phantoms. In: Jaffray D. (eds) World Congress on Medical Physics and Biomedical Engineering. 2015:728-31.
  • Leng S, Chen B, Vrieze T, et al. Construction of realistic phantoms from patient images and a commercial three-dimensional printer. J. Med. Imag. 2016;3(3): 033501-1-7.
  • Shin J, Sandhu RS, Shih G. Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers. J Digit Imaging. 2017;30(5):572-5.
  • Joerner MR, Maynard MR, Rajon DA, Bova FJ, Hintenlang DE. Three-Dimensional Printing for Construction of Tissue-Equivalent Anthropomorphic Phantoms and Determination of Conceptus Dose. AJR. 2018;211(6):1283-90.
  • Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of 3D printing materials for fabrication of a novel multifunctional 3D thyroid phantom for medical dosimetry and image quality. Rad Phys Chem. 2017;135:106-12.
  • Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. Int. j. adv. appl. sci. 2017;4(9):168-73.
  • Seoung YH. Evaluation of Usefulness for Quality Control Phantom of Computed Tomography Produced by Using Fused Deposition Modeling 3D Printing Technology. JEAS. 2017;12(12):3137-41.
  • Craft DF, Kry SF, Balter F, Salehpour M, Woodward W, Howell RM. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med phys. 2018;45(4):1614-21.
  • Zhang F, Zhang H, Zhao H, et al. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quant Imaging Med Surg. 2019;9(1):94-100.
  • Giron IH, Harder JM, Streekstra GJ, Geleijns J, Weldkamp WJH. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med. 2019;57:47-57.
  • Solc J, Vrba T, Burianova L. Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology. JINST. 2018; 13 P09018.
  • Assemany LPF, Junior OR, Silva E, Potiens MPA. Evaluation of 3D printing filaments for construction of a pediatric phantom for dosimetry in CBCT. Rad Phys Chem. 2020;167:108227.
  • imQuest, https://deckard.duhs.duke.edu/~samei/tg233.html. Date of Access:16.12.21

3 Boyutlu Baskı Parametrelerinin Silindirik LW-PLA Baskıları Üzerindeki Etkilerinin Radyolojik Değerlendirmesi: İlk Bulgular

Year 2021, Volume: 3 Issue: 2, 28 - 34, 31.12.2021
https://doi.org/10.51934/jomit.1037540

Abstract

Amaç: Bu çalışmada 3 boyutlu yazıcıyla farklı sıcaklıklarda, akış oranlarında ve dolgu oranlarında elde edilen örnek baskıların radyolojik özellik bakımından doku eşdeğerliklerinin değerlendirilmesi amaçlanmmıştır.
Gereç ve Yöntem: Çalışma kapsamında Ultimaker 3 Extended marka 3 boyutlu yazıcı ve LW-PLA filament kullanılmıştır. 195oC, 200oC ve 205oC olmak üzere 3 farklı baskı sıcaklığı, %60, %80 ve %100 olmak üzere 3 farklı akış oranı ve %90 ile %100 olmak üzere 2 farklı dolgu oranı kullanılarak toplamda 18 silindir baskı elde edilmiştir. Her bir baskı 1 cm çapında ve 3 cm boyundadır. Elde edilen baskıların yoğunlukları hesaplandıktan sonra Philips Brilliance marka 128 kesitli bilgisayarlı tomografi cihazında görüntüleri alınmıştır. Görüntülerde her bir baskıya ait 5 farklı kesitte ortalama Hounsfield Unit değerleri ve bu değerlerin standart sapmaları kaydedilmiştir. 5 kesit üzerinden alınan ortalama HU ve standart sapma değerleri baskı parametrelerine göre değerlendirilmiştir.
Bulgular: Elde edilen baskılara ait yoğunluk değerleri 0.63 g/cm3 ile 1.19 g/cm3 arasındadır. Yoğunluk değerlerinin akış oranı ve dolgu oranıyla doğrudan ilişkili olduğu gözlenmiştir. Baskılara ait ortalama Hounsfield Unit değerlerinin ise -450 ile +73 arasında değiştiği gözlenmiştir. Buna karşılık standart sapma değerleri ise ±6 ile ±25 arasında kaydedilmiştir. Ortalama Hounsfield Unit değerlerinin artan sıcaklık, akış oranı ve dolgu oranıyla arttığı gözlenmiştir. Standart sapma değerlerinin ise artan baskı sıcaklıklarında azaldığı gözlenmiştir.
Sonuç: Rutin bilgisayarlı tomografi incelemelerde görüntülenen farklı dokulara ait ortalama Hounsfield Unit değerleri düşünüldüğünde, LW-PLA filamenti kullanılarak farklı baskı parametrelerinde elde edilen örneklerin birçok farklı yumuşak dokuyu temsil edebilecek radyolojik özelliklere sahip olabileceği sonucuna ulaşılmıştır.

Project Number

120F054

References

  • Tamay DG, Usal TD, Alagoz AS, Yucel D, Hasirci D, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology 2019;7:164.
  • C. Lee Ventola. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014;39(10):704–11.
  • Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat. 2019; 18:1533033819870208.
  • Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740–60.
  • Kalender WA. Computed tomography: fundamentals, system technology image quality, applications. 3rd edition, Paris: Publicis, 2011.
  • Kamalian S, Lev MH, Gupta AR. Handbook of Clinical Neurology, Neuroimaging Part 1.In: Computed tomography imaging and angiography – principles. Amsterdam: Elsevier, 2016:3-20.
  • Kairn T, Crowe SB, Markwell T. Use of 3D Printed Materials as Tissue-Equivalent Phantoms. In: Jaffray D. (eds) World Congress on Medical Physics and Biomedical Engineering. 2015:728-31.
  • Leng S, Chen B, Vrieze T, et al. Construction of realistic phantoms from patient images and a commercial three-dimensional printer. J. Med. Imag. 2016;3(3): 033501-1-7.
  • Shin J, Sandhu RS, Shih G. Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers. J Digit Imaging. 2017;30(5):572-5.
  • Joerner MR, Maynard MR, Rajon DA, Bova FJ, Hintenlang DE. Three-Dimensional Printing for Construction of Tissue-Equivalent Anthropomorphic Phantoms and Determination of Conceptus Dose. AJR. 2018;211(6):1283-90.
  • Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of 3D printing materials for fabrication of a novel multifunctional 3D thyroid phantom for medical dosimetry and image quality. Rad Phys Chem. 2017;135:106-12.
  • Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. Int. j. adv. appl. sci. 2017;4(9):168-73.
  • Seoung YH. Evaluation of Usefulness for Quality Control Phantom of Computed Tomography Produced by Using Fused Deposition Modeling 3D Printing Technology. JEAS. 2017;12(12):3137-41.
  • Craft DF, Kry SF, Balter F, Salehpour M, Woodward W, Howell RM. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med phys. 2018;45(4):1614-21.
  • Zhang F, Zhang H, Zhao H, et al. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quant Imaging Med Surg. 2019;9(1):94-100.
  • Giron IH, Harder JM, Streekstra GJ, Geleijns J, Weldkamp WJH. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med. 2019;57:47-57.
  • Solc J, Vrba T, Burianova L. Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology. JINST. 2018; 13 P09018.
  • Assemany LPF, Junior OR, Silva E, Potiens MPA. Evaluation of 3D printing filaments for construction of a pediatric phantom for dosimetry in CBCT. Rad Phys Chem. 2020;167:108227.
  • imQuest, https://deckard.duhs.duke.edu/~samei/tg233.html. Date of Access:16.12.21
There are 19 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering, Tissue Engineering, Biomaterial
Journal Section Research Articles
Authors

İsmail Özsoykal This is me 0000-0002-5812-9347

R. Bugra Husemoglu 0000-0003-1979-160X

Ayşegül Yurt 0000-0001-9898-2329

Project Number 120F054
Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Özsoykal, İ., Husemoglu, R. B., & Yurt, A. (2021). Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results. Journal of Medical Innovation and Technology, 3(2), 28-34. https://doi.org/10.51934/jomit.1037540
AMA Özsoykal İ, Husemoglu RB, Yurt A. Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results. Journal of Medical Innovation and Technology. December 2021;3(2):28-34. doi:10.51934/jomit.1037540
Chicago Özsoykal, İsmail, R. Bugra Husemoglu, and Ayşegül Yurt. “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”. Journal of Medical Innovation and Technology 3, no. 2 (December 2021): 28-34. https://doi.org/10.51934/jomit.1037540.
EndNote Özsoykal İ, Husemoglu RB, Yurt A (December 1, 2021) Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results. Journal of Medical Innovation and Technology 3 2 28–34.
IEEE İ. Özsoykal, R. B. Husemoglu, and A. Yurt, “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”, Journal of Medical Innovation and Technology, vol. 3, no. 2, pp. 28–34, 2021, doi: 10.51934/jomit.1037540.
ISNAD Özsoykal, İsmail et al. “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”. Journal of Medical Innovation and Technology 3/2 (December 2021), 28-34. https://doi.org/10.51934/jomit.1037540.
JAMA Özsoykal İ, Husemoglu RB, Yurt A. Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results. Journal of Medical Innovation and Technology. 2021;3:28–34.
MLA Özsoykal, İsmail et al. “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”. Journal of Medical Innovation and Technology, vol. 3, no. 2, 2021, pp. 28-34, doi:10.51934/jomit.1037540.
Vancouver Özsoykal İ, Husemoglu RB, Yurt A. Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results. Journal of Medical Innovation and Technology. 2021;3(2):28-34.