Research Article
BibTex RIS Cite

An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold

Year 2021, Volume: 3 Issue: 2, 23 - 27, 31.12.2021
https://doi.org/10.51934/jomit.1049419

Abstract

Tissue engineering is a multidisciplinary field is an interdisciplinary field for the design of biological substitutes that can improve, restore, and maintain tissue functions. Thermoplastic polyurethanes (TPUs) are linear polymers which are widely used for tissue engineering due to its flexibility in processing methods, biocompatibility and excellent mechanical properties. They are suitable materials for use in three-dimensional (3D) printing. Dermal fibroblasts are mesenchymal cells which play crucial roles in physiological tissue repair. The present study aimed to investigate the viability, proliferation, adhesion, and type IV collagen expression of human dermal fibroblasts (HDFs) seeded on 3D printed TPU scaffolds in vitro. HDFs were seeded on 3D TPU scaffolds or tissue culture polystyrene plates as control and cultured for 1, 3, 7, and 14 days. 3D TPU scaffolds were prepared using a custom made fused deposition modelling printer. The viability and proliferation of cells was analyzed by WST-1 assay on days 1 and 3. The cell adhesion was evaluated by scanning electron microscopy (SEM) on days 1 and 3. The cell morphology was examined by hematoxylin and eosin (H&E) staining. Expression of type IV collagen was analyzed by immunohistochemical (IHC) staining. The viability of HDFs on 3D TPU scaffolds was lower than their control groups on days 1 and 3, slightly higher on day 3. SEM images showed HDF attachment to the 3D TPU scaffold surface with spindle-shaped morphology. H&E staining demonstrated that HDFs on 3D TPU scaffolds showed smaller morphologies on days 7 and 14 compared to days 1 and 3. Type IV collagen staining was more intense in HDFs on 3D TPU scaffolds on day 1, 3, and 7 compared to day 14. In conclusion, our study shows the biocompatibility and the potential applications of 3D printed TPU scaffolds for skin tissue engineering using fibroblasts.

References

  • Haniffa MA, Wang X-N, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CMU, Collin MP. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 2007;179:1595-1604.
  • Forrest, L. Current concepts in soft connective tissue wound healing. Br J Surg 1985;70:133-40.
  • Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers (Basel), 2020;12: 2010.
  • Behere I, Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res A 2022;110:443-61.
  • Richards DJ, Tan Y, Jia J, Yao H, Mei Y. 3D Printing for tissue engineering. Isr J Chem. 2013;53:805-14.
  • Harynska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H. Medical-Grade PCL based polyurethane system for FDM 3D Printing-Characterization and Fabrication. Materials (Basel). 2019 Mar 16;12:887.
  • Joseph J, Patel RM, Wenham A, Smith JR. Biomedical applications of polyurethane materials and coatings. Trans Inst Met Finish. 2018;96:121-29.
  • Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU. Prog Addit Manuf 2017; 2: 117-23.
  • Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5: 025001.
  • Huerta RR, Silva E, Ekaette I, El-Bialy T, Saldaña MDA. High-Intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrason Sonochem 2020;64:104759.
  • Chen WC, Wei YH, Chu IM, Yao CL. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. J Tissue Eng Regen Med 2013;7:665-72.
  • Griffin MF, Naderi N, Kalaskar DM, Seifalian AM, Butler PE. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res Ther 2019;10:1-14.
  • Hollister SJ. Porous Scaffold Design for Tissue Engineering. Nature Materials 2005;4:518-24.
  • Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28:5407-17.
  • Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LSh. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds. J Biomed Mater Res B Appl Biomater . 2015;103:960-70.
  • Woitschach F, Kloss M, Schlodder K, Borck A, Grabow N, Reisinger EC, Sombetzki M. In vitro study of the interaction of innate immune cells with liquid silicone rubber coated with zwitterionic methyl methacrylate and thermoplastic polyurethanes. Materials 2021;14:5972.
  • Hasegawa H, Naito I, Nakano K, Momota R, Nishida K, Taguchi T, et al. The distributions of type IV collagen alpha chains in basement membranes of human epidermis and skin appendages. Arch Histol Cytol 2007;70:255-65.
  • Olsen DR, Peltonen J, Jaakkola S, Chu ML, Uitto J. Collagen gene expression by cultured human skin fibroblasts. Abundant steady-state levels of type VI procollagen messenger RNAs. J Clin Invest 1989;83(3): 791-5.
  • Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, et al. The time-dependent rearrangement of the epithelial basement membrane in human skin wounds-immunohistochemical localization of Collagen IV and VII. Int J Legal Med 1992;105:93-7.
Year 2021, Volume: 3 Issue: 2, 23 - 27, 31.12.2021
https://doi.org/10.51934/jomit.1049419

Abstract

Doku mühendisliği, doku fonksiyonlarını iyileştirebilen, restore edebilen ve sürdürebilen biyolojik ikamelerin tasarımı çalışmalarını içeren multidisipliner bir alandır. Termoplastik poliüretanlar (TPU'lar), üretim yöntemlerindeki esneklikleri, biyouyumlulukları ve mükemmel mekanik özellikleri nedeniyle doku mühendisliğinde yaygın olarak kullanılan lineer polimerlerdir. Bu özellikleri ile üç boyutlu (3B) baskıda kullanıma uygun malzemelerdir. Dermal fibroblastlar (HDF), fizyolojik doku onarımında önemli rol oynayan mezenkimal hücrelerdir. Çalışmamızda, in vitro olarak 3B baskılı TPU doku iskelelerine ekilen insan HDF'lerin canlılığı, proliferasyonu, adezyonu ve tip IV kollajen ekspresyonunu araştırmayı amaçladık. HDF'ler, 3B TPU doku iskeleleri ve kontrol olarak doku kültürü polistiren plakaları üzerine ekildi ve 1, 3, 7 ve 14 gün boyunca kültüre edildi. 3B TPU doku iskeleleri, özel yapılmış bir eriyik yığma modelleme (FDM) yazıcısı kullanılarak hazırlandı. Hücrelerin canlılığı ve proliferasyonu, 1. ve 3. günlerde WST-1 testi ile analiz edildi. Hücre adezyonu, 1. ve 3. günlerde taramalı elektron mikroskobu (SEM) ile değerlendirildi. Hücre morfolojisi, hematoksilen ve eozin (H&E) boyaması ile incelendi. Tip IV kollajen ekspresyonu, immünohistokimyasal (IHC) boyama ile analiz edildi. HDF'lerin 3B TPU doku iskeleleri üzerindeki canlılığı, 1. ve 3. günlerde kontrol gruplarından daha düşük, 3. günde biraz daha yüksekti. H&E boyaması ile, 3B TPU doku iskelelerindeki HDF'lerin 1. ve 3. günlere kıyasla 7. ve 14. günlerde daha küçük morfolojiler gösterdiği tespit edildi. Tip IV kollajen boyaması, 3B TPU doku iskelelerindeki HDF'lerde 14. güne kıyasla 1., 3. ve 7. günlerde daha yoğundu. Sonuç olarak, çalışmamız, cilt dokusu mühendisliği için 3B baskılı TPU doku iskelelerinin fibroblastlar ile biyouyumluluğunu ve potansiyel uygulamalarını göstermektedir.

References

  • Haniffa MA, Wang X-N, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CMU, Collin MP. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 2007;179:1595-1604.
  • Forrest, L. Current concepts in soft connective tissue wound healing. Br J Surg 1985;70:133-40.
  • Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers (Basel), 2020;12: 2010.
  • Behere I, Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res A 2022;110:443-61.
  • Richards DJ, Tan Y, Jia J, Yao H, Mei Y. 3D Printing for tissue engineering. Isr J Chem. 2013;53:805-14.
  • Harynska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H. Medical-Grade PCL based polyurethane system for FDM 3D Printing-Characterization and Fabrication. Materials (Basel). 2019 Mar 16;12:887.
  • Joseph J, Patel RM, Wenham A, Smith JR. Biomedical applications of polyurethane materials and coatings. Trans Inst Met Finish. 2018;96:121-29.
  • Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU. Prog Addit Manuf 2017; 2: 117-23.
  • Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5: 025001.
  • Huerta RR, Silva E, Ekaette I, El-Bialy T, Saldaña MDA. High-Intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrason Sonochem 2020;64:104759.
  • Chen WC, Wei YH, Chu IM, Yao CL. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. J Tissue Eng Regen Med 2013;7:665-72.
  • Griffin MF, Naderi N, Kalaskar DM, Seifalian AM, Butler PE. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res Ther 2019;10:1-14.
  • Hollister SJ. Porous Scaffold Design for Tissue Engineering. Nature Materials 2005;4:518-24.
  • Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28:5407-17.
  • Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LSh. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds. J Biomed Mater Res B Appl Biomater . 2015;103:960-70.
  • Woitschach F, Kloss M, Schlodder K, Borck A, Grabow N, Reisinger EC, Sombetzki M. In vitro study of the interaction of innate immune cells with liquid silicone rubber coated with zwitterionic methyl methacrylate and thermoplastic polyurethanes. Materials 2021;14:5972.
  • Hasegawa H, Naito I, Nakano K, Momota R, Nishida K, Taguchi T, et al. The distributions of type IV collagen alpha chains in basement membranes of human epidermis and skin appendages. Arch Histol Cytol 2007;70:255-65.
  • Olsen DR, Peltonen J, Jaakkola S, Chu ML, Uitto J. Collagen gene expression by cultured human skin fibroblasts. Abundant steady-state levels of type VI procollagen messenger RNAs. J Clin Invest 1989;83(3): 791-5.
  • Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, et al. The time-dependent rearrangement of the epithelial basement membrane in human skin wounds-immunohistochemical localization of Collagen IV and VII. Int J Legal Med 1992;105:93-7.
There are 19 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Articles
Authors

Ufkay Karabay 0000-0001-8608-1865

Selma Aydemir 0000-0003-1263-9998

Mehtap Yuksel Egrılmez 0000-0002-3570-1865

Başak Baykara 0000-0002-4178-2235

R. Bugra Husemoglu 0000-0003-1979-160X

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Karabay, U., Aydemir, S., Yuksel Egrılmez, M., Baykara, B., et al. (2021). An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold. Journal of Medical Innovation and Technology, 3(2), 23-27. https://doi.org/10.51934/jomit.1049419
AMA Karabay U, Aydemir S, Yuksel Egrılmez M, Baykara B, Husemoglu RB. An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold. Journal of Medical Innovation and Technology. December 2021;3(2):23-27. doi:10.51934/jomit.1049419
Chicago Karabay, Ufkay, Selma Aydemir, Mehtap Yuksel Egrılmez, Başak Baykara, and R. Bugra Husemoglu. “An in Vitro Assessment of the Responses of Human Dermal Fibroblast Seeded on 3D Printed Thermoplastic Polyurethane Scaffold”. Journal of Medical Innovation and Technology 3, no. 2 (December 2021): 23-27. https://doi.org/10.51934/jomit.1049419.
EndNote Karabay U, Aydemir S, Yuksel Egrılmez M, Baykara B, Husemoglu RB (December 1, 2021) An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold. Journal of Medical Innovation and Technology 3 2 23–27.
IEEE U. Karabay, S. Aydemir, M. Yuksel Egrılmez, B. Baykara, and R. B. Husemoglu, “An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold”, Journal of Medical Innovation and Technology, vol. 3, no. 2, pp. 23–27, 2021, doi: 10.51934/jomit.1049419.
ISNAD Karabay, Ufkay et al. “An in Vitro Assessment of the Responses of Human Dermal Fibroblast Seeded on 3D Printed Thermoplastic Polyurethane Scaffold”. Journal of Medical Innovation and Technology 3/2 (December 2021), 23-27. https://doi.org/10.51934/jomit.1049419.
JAMA Karabay U, Aydemir S, Yuksel Egrılmez M, Baykara B, Husemoglu RB. An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold. Journal of Medical Innovation and Technology. 2021;3:23–27.
MLA Karabay, Ufkay et al. “An in Vitro Assessment of the Responses of Human Dermal Fibroblast Seeded on 3D Printed Thermoplastic Polyurethane Scaffold”. Journal of Medical Innovation and Technology, vol. 3, no. 2, 2021, pp. 23-27, doi:10.51934/jomit.1049419.
Vancouver Karabay U, Aydemir S, Yuksel Egrılmez M, Baykara B, Husemoglu RB. An in vitro assessment of the responses of human dermal fibroblast seeded on 3D printed thermoplastic polyurethane scaffold. Journal of Medical Innovation and Technology. 2021;3(2):23-7.