Research Article
BibTex RIS Cite

Boric acid preserves keratinocyte viability, migration, and redox homeostasis under hydrogen peroxide–induced oxidative stress in HaCaT keratinocytes

Year 2026, Volume: 7 Issue: 1, 94 - 100, 20.02.2026
https://izlik.org/JA55LM75EA

Abstract

Aims: Oxidative stress plays a critical role in keratinocyte dysfunction, impaired wound healing, and inflammatory skin conditions. Boric acid (BA), a bioactive trace element, has been suggested to exert cytoprotective and antioxidant effects; however, its impact on keratinocytes under oxidative stress conditions remains incompletely understood. This study aimed to investigate the effects of BA on hydrogen peroxide (H₂O₂)–induced oxidative damage in HaCaT keratinocytes by evaluating cell viability, migration capacity, three-dimensional spheroid formation, and oxidative stress–related biomarkers.
Methods: HaCaT cells were exposed to different concentrations of H₂O₂ and BA, either alone or in combination, for 24 and 48 hours. Cell viability was assessed using the CCK-8 assay. Cell migration was evaluated by an in vitro scratch assay, while spheroid area and diameter were measured in a three-dimensional culture model.
Results: BA and H₂O₂ induced marked time- and dose-dependent effects on HaCaT cells. At 24 h, high-dose BA (50–100 μM) significantly reduced cell viability (p=0.004 and p=0.014), whereas low-dose BA had no effect (p>0.05). Exposure to 50 μM H₂O₂ decreased viability (p<0.01), while 100 μM H₂O₂ was ineffective (p<0.855). Selected H₂O₂+BA combinations further reduced viability (p≤0.022). At 48 h, BA alone did not affect viability, whereas 100 μM H₂O₂ and most combined treatments induced significant cytotoxicity (p<0.001). H₂O₂ impaired cell migration, while BA significantly enhanced wound closure. BA co-treatment markedly improved migration in oxidatively stressed cells (p<0.001) and restored spheroid size and compactness in three-dimensional cultures. Oxidative stress biomarkers showed minimal changes at 24 h. At 48 h, AOPP levels were significantly altered by H₂O₂, BA, and all combined treatments (p<0.001). BA alone reduced MDA levels (p≤0.017), while CAT activity was significantly modulated by H₂O₂ and H₂O₂+BA combinations (p≤0.0057). TSH levels remained largely unchanged.
Conclusion: BA exerts protective effects against H₂O₂-induced oxidative damage in HaCaT keratinocytes by preserving cell viability, migration, and structural organization. These findings suggest that BA may have therapeutic potential in protecting keratinocytes from oxidative stress–related damage and warrant further mechanistic and translational investigations.

References

  • Li Pomi F, Gammeri L, Borgia F, Di Gioacchino M, Gangemi S. Oxidative stress and skin diseases: the role of lipid peroxidation. Antioxidants (Basel). 2025;14(5):555. doi:10.3390/antiox14050555
  • Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules. 2023;28(16):5979. doi:10.3390/molecules28165979
  • Lai R, Xian D, Xiong X, et al. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 2018;23:130-135. doi:10.1080/13510002.2018.1462027
  • Péter I, Jagicza A, Ajtay Z, et al. Psoriasis and oxidative stress. Orv Hetil. 2016;157:1781-1785. doi:10.1556/650.2016.30589
  • Houshang N, Reza K, Masoud S, et al. Antioxidant status in patients with psoriasis. Cell Biochem Funct. 2014;32:268-273. doi:10.1002/cbf.3011
  • Ratcliffe N, Wieczorek T, Drabińska N, Gould O, Osborne A, De Lacy Costello B. A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: an aid to understanding the origins of volatile organic compounds from the human body. J Breath Res. 2020;14(3):034001. doi:10.1088/1752-7163/ab7f9d
  • Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int J Mol Sci. 2021;22(19):10799. doi:10. 3390/ijms221910799
  • Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health. Biol Trace Elem Res. 2018;186(1):31-51. doi:10.1007/s12011-018-1284-3
  • Ayhanci A, Tanriverdi DT, Sahinturk V, Cengiz M, Appak-Baskoy S, Sahin IK. Protective effects of boron on cyclophosphamide-induced bladder damage and oxidative stress in rats. Biol Trace Elem Res. 2020; 197(1):184-191. doi:10.1007/s12011-019-01969-z
  • Barrón-González M, Montes-Aparicio AV, Cuevas-Galindo ME, et al. Boron-containing compounds on neurons: actions and potential applications for treating neurodegenerative diseases. J Inorg Biochem. 2023;238:112027. doi:10.1016/j.jinorgbio.2022.112027
  • Liu X, Wang B. Adipose stem cell-derived exosomes promote wound healing by regulating the let-7i-5p/GAS7 axis. J Cosmet Dermatol. 2024; 23(6):2279-2287. doi:10.1111/jocd.16267
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-310. doi:10.1016/S0076-6879(78)52032-6
  • Hanasand M, Omdal R, Norheim KB, et al. Advanced oxidation protein products in human plasma: method adaptation and clinical relevance. Redox Rep. 2012;17(3):92-97. doi:10.1179/1351000212Y.0000000008
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192-205. doi:10.1016/0003-2697(68)90092-4
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126. doi:10. 1016/S0076-6879(84)05016-3
  • Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565-2575. doi:10.1038/sj.jid. 5700340
  • Chen J, Liu Y, Zhao Z, Qiu J. Oxidative stress in the skin: impact and related protection. Int J Cosmet Sci. 2021;43(5):495-509. doi:10.1111/ics. 12728
  • Barysch MJ, Braun RP, Kolm I, et al. Keratinocytic malfunction as a trigger for the development of solar lentigines. Dermatopathology (Basel). 2019;6(1):1-11. doi:10.1159/000495404
  • Lee SY, Kim CH, Hwang BS, et al. Protective effects of oenothera biennis against hydrogen peroxide-induced oxidative stress and cell death in skin keratinocytes. Life (Basel). 2020;10(11):255. doi:10.3390/life10110255
  • Shireen F, Nawaz MA, Lu J, et al. Application of boron reduces vanadium toxicity by altering the subcellular distribution of vanadium, enhancing boron uptake and enhancing the antioxidant defense system of watermelon. Ecotoxicol Environ Saf. 2021;226:112828. doi:10.1016/j.ecoenv.2021.112828
  • Jackson DG, Cardwell LA, Oussedik E, Feldman SR. Utility of boron in dermatology. J Dermatolog Treat. 2020;31(1):2-12. doi:10.1080/09546634. 2017.1363850
  • Akçaalan S, Eroğlu Güneş C, Kurar E. Boric acid stimulates wound closure and modulates EMT-related gene expression in HaCaT cells. Biol Trace Elem Res. 2025. doi:10.1007/s12011-025-04945-y
  • Karimi H, Moskal P, Żak A, Stępień E. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep. 2023;13:7648. doi: 10.1038/s41598-023-34571-4
  • Nie Y, Xu X, Wang W, Ma N, Lendlein A. Spheroid formation of human keratinocyte: balancing between cell-substrate and cell-cell interaction. Clin Hemorheol Microcirc. 2020;76(2):329-340. doi:10.3233/CH-209217
  • Kalhori D, Rakhshani F, Ma Y, et al. Spheroid-based skin-on-a-chip platform for the evaluation of the toxicity of small molecules and nanoparticles. Lab Chip. 2025;25(16):4038-4047. doi:10.1039/d5lc00311c
  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1): 16-26. doi:10.1002/jcp.24683
  • Monico DA, Calori IR, Souza C, Espreafico EM, Bi H, Tedesco AC. Melanoma spheroid-containing artificial dermis as an alternative approach to in vivo models. Exp Cell Res. 2022;417:113207. doi:10.1016/j.yexcr.2022.113207
  • Szczepanek M, Silarski M, Panek A, et al. Effect of neutron radiation on 10BPA-loaded melanoma spheroids and melanocytes. Cells. 2025;14(3): 232. doi:10.3390/cells14030232
  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456-472. doi:10.1177/ 1087057117696795
  • Moussa FH, Akbas E, Yuzbasioglu D, Unal F. Boric acid prevents MMC- and H₂O₂-related DNA damage: evidence from cytogenetic and comet assays. Biol Trace Elem Res. 2025. doi:10.1007/s12011-025-04704-z
  • Bayıl S, Özdemir Tozlu Ö, Karagul B. Synthesized boron compounds: neurotoxic and oxidative effects in an in vitro model of Alzheimer's disease. Sci Prog. 2025;108(4):368504251384830. doi:10.1177/00368504251384830
  • Yu LS, Liu JJ, Yang MH, Lin YC, Chen CS. Mechanotransduction-related ferroptosis: enhancing boron neutron capture therapy efficacy in glioblastoma using a spheroid model. Mol Ther Oncol. 2025;33(3):201033. doi:10.1016/j.omton.2025.201033
  • Zhen AX, Kang KA, Piao MJ, Madushan Fernando PDS, Lakmini Herath HMU, Hyun JW. Protective effects of astaxanthin on particulate matter 2.5 induced senescence in HaCaT keratinocytes via maintenance of redox homeostasis. Exp Ther Med. 2024;28(1):275. doi:10.3892/etm. 2024.12563
  • Soeur J, Belaïdi JP, Chollet C, et al. Photo-pollution stress in skin: traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J Dermatol Sci. 2017;86(2):162-169. doi: 10.1016/j.jdermsci.2017.01.007
  • Lim HW, Kim K, Lim CJ. Contribution of ginsenoside Re to cellular redox homeostasis via upregulating glutathione and superoxide dismutase in HaCaT keratinocytes under normal conditions. Pharmazie. 2016;71(7):413-419. doi:10.1691/ph.2016.6518
  • Zheng Q, Jin X, Nguyen TTM, Kim JW, Kim YM, Yi TH. Bauhinia forficata link protects HaCaT keratinocytes from H2O2-induced oxidative stress and inflammation via Nrf2/PINK1 and NF-κB signaling pathways. Plants (Basel). 2025;14(12):1751. doi:10.3390/plants14121751
  • Chettouh-Hammas N, Fasani F, Boileau A, Gosset D, Busco G, Grillon C. Improvement of antioxidant defences in keratinocytes grown in physioxia: comparison of 2D and 3D models. Oxid Med Cell Longev. 2023;2023:6829931. doi:10.1155/2023/6829931
  • Baba SP, Bhatnagar A. Role of thiols in oxıdative stress. Curr Opin Toxicol. 2018;7:133-139. doi:10.1016/j.cotox.2018.03.005
  • Abdel-Mageed HM, El-Laithy HM, Mahran LG, Fahmy AS, Mäder K, Mohamed SA. Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochem. 2012;47(7):1155-1162. doi:10.1016/j.procbio.2012.04.008
  • Chupakhin ON, Khonina TG, Kungurov NV, et al. Silicon– boron-containing glycerohydrogel having wound healing, regenerative, and antimicrobial activity. Russ Chem Bull. 2017;66:558-563. doi:10.1007/s11172-017-1771-2
  • Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol. 2024;12:1475584. doi: 10.3389/fbioe.2024.1475584
  • Nielsen FH. Update on human health effects of boron. J Trace Elem Med Biol. 2014;28(4):383-387. doi:10.1016/j.jtemb.2014.06.023
  • Kar F, Hacioglu C, Senturk H, Donmez DB, Kanbak G. The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res. 2020;195(1): 150-158. doi:10.1007/s12011-019-01824-1
  • Szczepanczyk M, Ruzgas T, Gullfot F, Gustafsson A, Björklund S. Catalase activity in keratinocytes, stratum corneum, and defatted algae biomass as a potential skin care ingredient. Biomedicines. 2021;9(12): 1868. doi:10.3390/biomedicines9121868
  • Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C. The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol. 2018;50:296-304. doi:10.1016/j.jtemb.2018. 07.018
  • Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol. 2024;12:1475584. doi: 10.3389/fbioe.2024.1475584
There are 46 citations in total.

Details

Primary Language English
Subjects Dermatology
Journal Section Research Article
Authors

Burcu Biltekin 0000-0002-8435-6797

Şeyma Dümür 0000-0001-8893-2926

Naile Fevziye Mısırlıoğlu 0009-0007-4735-4091

Hafize Uzun 0000-0002-1347-8498

Submission Date January 12, 2026
Acceptance Date February 1, 2026
Publication Date February 20, 2026
IZ https://izlik.org/JA55LM75EA
Published in Issue Year 2026 Volume: 7 Issue: 1

Cite

AMA 1.Biltekin B, Dümür Ş, Mısırlıoğlu NF, Uzun H. Boric acid preserves keratinocyte viability, migration, and redox homeostasis under hydrogen peroxide–induced oxidative stress in HaCaT keratinocytes. J Med Palliat Care / JOMPAC / jompac. 2026;7(1):94-100. https://izlik.org/JA55LM75EA

TR DİZİN ULAKBİM and International Indexes (1d)

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]



google-scholar.png


crossref.jpg

f9ab67f.png

asos-index.png


COPE.jpg

icmje_1_orig.png

cc.logo.large.png

ncbi.png


pn6krf5.jpg


Our journal is in TR-Dizin, DRJI (Directory of Research Journals Indexing, General Impact Factor, Google Scholar, Researchgate, CrossRef (DOI), ROAD, ASOS Index, Turk Medline Index, Eurasian Scientific Journal Index (ESJI), and Turkiye Citation Index.

EBSCO, DOAJ, OAJI and ProQuest Index are in process of evaluation. 

Journal articles are evaluated as "Double-Blind Peer Review"