Research Article
BibTex RIS Cite

Hastanede yatan COVID-19 hastalarında hastalığın ilerlemesini ve mortalite riskini tahmin etmede ETCO2 değerlerinin kullanılabilirliği

Year 2022, Volume: 3 Issue: 4, 292 - 299, 26.12.2022
https://doi.org/10.47582/jompac.1166053

Abstract

Amaç: End-tidal CO2 (ETCO2) seviyeleri, SpO2 değerlerinden bağımsız olarak hastanın solunum ve metabolik/perfüzyon durumunu yansıtır. Bu çalışma, hastanede yatan COVID-19 hastalarınıda entübasyon ihtiyacını, yoğun bakım ünitesine kabulünü ve mortaliteyi tahmin etmede ETCO2 değerlerinin faydasını araştırmayı amaçladı.
Gereç ve Yöntem: COVID-19 pnömonisi olan toplam 108 hastanede yatan hasta dahil edildi. Solunum parametreleri (oksijen satürasyonu, ETCO2 ve solunum hızı [RR]- O2’li ve O2’siz [w/wo O2]) ve laboratuvar parametreleri ile ilgili veriler kaydedildi.
Bulgular: COVİD-19 hastalarında yoğun bakım ünitesine yatış ihtiyacı, anlamlı olarak daha yüksek ETCO2 değerleri ile ilişkilendirildi. (wO2:27,9 (4,6) vs. 18,6(8,4), p=0.040; woO2: 30,1 (4,9) vs. 23,8 (6,9), p=0.040). Mortalite, daha yüksek RR olasılığı (wO2:32,4 (5,8)’e karşı 24,6 (6,8), p=0.002) ve daha düşük saturasyon (wO2:92,9 (3,8)’e karşı 95,5 (4,2), p=0.025; woO2: 87,1 (5,7) vs. 91,8(6,6), p=0.013) ile ilişkili bulundu.
Sonuç: Bulgularımız, azalmış ETCO2 (w/wo O2) değerlerinin hastaneden taburcu olma olasılığının daha düşük ve yoğun bakım ünitesine transfer olasılığının artmasıyla ilişkisini ortaya koydu. Düşük oksijen satürasyon seviyeleri, hastanede yatan COVID-19 hastalarında hem entübasyon ihtiyacı hem de mortalite riskinin artmasıile ilişkili bulundu.

Supporting Institution

yok

Project Number

yok

References

  • Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382: 760-2.
  • Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 outbreak. Curr Biol 2020; 30: 1578.
  • Sun S, Cai X, Wang H, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta 2020; 507: 174-80.
  • Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 – A systematic review. Life Sci 2020; 254: 117788.
  • Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201: 1299-300.
  • Liu X, Liu X, Xu Y, et al. Ventilatory ratio in hypercapnic mechanically ventilated patients with COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201: 1297-9.
  • Pan C, Chen L, Lu C. Lung recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med 2020; 201: 1294-7.
  • Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196: 822-33.
  • Xia J, Feng Y, Li M, et al. Increased physiological dead space in mechanically ventilated COVID-19 patients recovering from severe acute respiratory distress syndrome: a case report. BMC Infect Dis 2020; 20: 637.
  • Kallet RH, Lipnick MS. End-tidal-to-arterial PCO2 ratio as signifier for physiologic dead-space ratio and oxygenation dysfunction in acute respiratory distress syndrome. Respir Care 2021; 66: 263-8.
  • Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care 2005; 50: 462-7.
  • Doorduin J, Nollet JL, Vugts MP, et al. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2016; 20: 121.
  • Sinha P, Calfee CS, Beitler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019; 199: 333-41.
  • Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care 2020; 24: 154.
  • Field JM, Hazinski MF, Sayre MR, et al. Part 1: Executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122: 640-56.
  • Cereceda-Sánchez FJ, Molina-Mula J. Capnography as a tool to detect metabolic changes in patients cared for in the emergency setting. Rev Lat Am Enfermagem 2017; 25: e2885.
  • Aminiahidashti H, Shafiee S, Zamani Kiasari A, Sazgar M. Applications of end-tidal carbon dioxide (ETCO2) monitoring in emergency department; a narrative review. Emerg (Tehran) 2018; 6: e5.
  • EMS Products. https://www.ems1.com/ems-products/capnography/articles/etcO2-monitoring-youre-doing-the-right-thing-2WyB2s4MXPgA2Lw7/. Nowak T. Accessed 18 February 2021.
  • Hu D, Li J, Gao R, et al. Decreased CO2 Levels as indicators of possible mechanical ventilation-induced hyperventilation in COVID-19 patients: a retrospective analysis. Front Public Health 2021; 8: 596168.
  • The Turkish Ministry of Health (2020) Guidelines for the Management of Adults with COVID-19. https://covid19bilgi.saglik.gov.tr/depo/rehberler/COVID-19-Rehberi.pdf. Accessed 11 Januray 2021.
  • Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J 2015; 45: 1704-16.
  • Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346: 1281-6.
  • Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med 2020; 48: 1129-34.
  • Tang Y, Turner MJ, Baker AB. Effects of alveolar dead-space, shunt and V/Q distribution on respiratory dead-space measurements. Br J Anaesth 2005; 95: 538-48.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395: 1054-62.
  • Albarello F, Pianura E, Di Stefano F, et al. 2019-novel coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. Int J Infect Dis 2020; 93: 192-7.
  • Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care 2000; 4: 207-15.
  • Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment. 7th ed. http://kjfy.meetingchina.org/msite/news/show/cn/3337.html. China national health commission. Accessed 25 February 2021.

The utility of ETCO2 value in predicting the progress of the disease and mortality risk in hospitalized patients with COVID-19 pneumonia

Year 2022, Volume: 3 Issue: 4, 292 - 299, 26.12.2022
https://doi.org/10.47582/jompac.1166053

Abstract

Aim: End-tidal CO2 (ETCO2) levels are reflective of the ventilatory and metabolic/perfusion status of a patient, regardless of his/her SpO2 values. This study aimed to investigate the utility of ETCO2values in predicting the need for intubation, ICU admission, and mortality in hospitalized patients with COVID-19 pneumonia.
Material and Method: A total of 108 hospitalized patients with COVID-19 pneumonia were included. Data on respiratory parameters (oxygen saturation, ETCO2, and respiratory rate [RR]- with and without O2 [w/wo O2]) and laboratory parameters were recorded.
Results: The need forintensive care unit(ICU) admission was associated with significantly higher ETCO2 values (wO2:27.9 (4.6) vs. 18.6(8.4), p=0.040; woO2: 30.1(4.9) vs. 23.8(6.9), p=0.040). Mortality was associated with higher likelihood of higher RR (wO2:32.4(5.8) vs. 24.6(6.8), p=0.002) and lower oxygen saturation (wO2:92.9(3.8) vs. 95.5(4.2), p=0.025; woO2:87.1(5.7) vs. 91.8(6.6), p=0.013). Presence vs. lack of intubation need was associated with significantly increased likelihood of saturation (wO2:93.1(5.3) vs. 95.9(3.8), p=0.013; woO2:87.6(8.3) vs. 92.3(5.9), p=0.007). Hospital discharge vs. ICU stay was associated with significantly higher ETCO2 values (wO2:27.9 (4.6) vs. 18.6(8.4), p=0.040; woO2: 30.1(4.9) vs. 23.8(6.9), p=0.040)
Conclusion: Our findings revealed the association of decreased ETCO2 (w/wo O2) values with a lower likelihood of hospital discharge and increased likelihood of ICU transfer. Low oxygen saturation levels related the increased risk of both intubation need and mortality in hospitalized COVID-19 patients.

Project Number

yok

References

  • Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382: 760-2.
  • Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 outbreak. Curr Biol 2020; 30: 1578.
  • Sun S, Cai X, Wang H, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta 2020; 507: 174-80.
  • Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 – A systematic review. Life Sci 2020; 254: 117788.
  • Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201: 1299-300.
  • Liu X, Liu X, Xu Y, et al. Ventilatory ratio in hypercapnic mechanically ventilated patients with COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201: 1297-9.
  • Pan C, Chen L, Lu C. Lung recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med 2020; 201: 1294-7.
  • Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196: 822-33.
  • Xia J, Feng Y, Li M, et al. Increased physiological dead space in mechanically ventilated COVID-19 patients recovering from severe acute respiratory distress syndrome: a case report. BMC Infect Dis 2020; 20: 637.
  • Kallet RH, Lipnick MS. End-tidal-to-arterial PCO2 ratio as signifier for physiologic dead-space ratio and oxygenation dysfunction in acute respiratory distress syndrome. Respir Care 2021; 66: 263-8.
  • Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care 2005; 50: 462-7.
  • Doorduin J, Nollet JL, Vugts MP, et al. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2016; 20: 121.
  • Sinha P, Calfee CS, Beitler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019; 199: 333-41.
  • Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care 2020; 24: 154.
  • Field JM, Hazinski MF, Sayre MR, et al. Part 1: Executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122: 640-56.
  • Cereceda-Sánchez FJ, Molina-Mula J. Capnography as a tool to detect metabolic changes in patients cared for in the emergency setting. Rev Lat Am Enfermagem 2017; 25: e2885.
  • Aminiahidashti H, Shafiee S, Zamani Kiasari A, Sazgar M. Applications of end-tidal carbon dioxide (ETCO2) monitoring in emergency department; a narrative review. Emerg (Tehran) 2018; 6: e5.
  • EMS Products. https://www.ems1.com/ems-products/capnography/articles/etcO2-monitoring-youre-doing-the-right-thing-2WyB2s4MXPgA2Lw7/. Nowak T. Accessed 18 February 2021.
  • Hu D, Li J, Gao R, et al. Decreased CO2 Levels as indicators of possible mechanical ventilation-induced hyperventilation in COVID-19 patients: a retrospective analysis. Front Public Health 2021; 8: 596168.
  • The Turkish Ministry of Health (2020) Guidelines for the Management of Adults with COVID-19. https://covid19bilgi.saglik.gov.tr/depo/rehberler/COVID-19-Rehberi.pdf. Accessed 11 Januray 2021.
  • Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J 2015; 45: 1704-16.
  • Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346: 1281-6.
  • Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med 2020; 48: 1129-34.
  • Tang Y, Turner MJ, Baker AB. Effects of alveolar dead-space, shunt and V/Q distribution on respiratory dead-space measurements. Br J Anaesth 2005; 95: 538-48.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395: 1054-62.
  • Albarello F, Pianura E, Di Stefano F, et al. 2019-novel coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. Int J Infect Dis 2020; 93: 192-7.
  • Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care 2000; 4: 207-15.
  • Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment. 7th ed. http://kjfy.meetingchina.org/msite/news/show/cn/3337.html. China national health commission. Accessed 25 February 2021.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles [en] Araştırma Makaleleri [tr]
Authors

Pınar Yeşim Akyol 0000-0003-2477-1443

Hüseyin Acar 0000-0002-1905-7133

Rezan Karaali

Ejder Saylav Bora 0000-0002-2448-2337

Fatih Topal

Project Number yok
Publication Date December 26, 2022
Published in Issue Year 2022 Volume: 3 Issue: 4

Cite

AMA Akyol PY, Acar H, Karaali R, Bora ES, Topal F. The utility of ETCO2 value in predicting the progress of the disease and mortality risk in hospitalized patients with COVID-19 pneumonia. J Med Palliat Care / JOMPAC / jompac. December 2022;3(4):292-299. doi:10.47582/jompac.1166053

TR DİZİN ULAKBİM and International Indexes (1d)

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]



google-scholar.png


crossref.jpg

f9ab67f.png

asos-index.png


COPE.jpg

icmje_1_orig.png

cc.logo.large.png

ncbi.png

ORCID_logo.png

pn6krf5.jpg


Our journal is in TR-Dizin, DRJI (Directory of Research Journals Indexing, General Impact Factor, Google Scholar, Researchgate, CrossRef (DOI), ROAD, ASOS Index, Turk Medline Index, Eurasian Scientific Journal Index (ESJI), and Turkiye Citation Index.

EBSCO, DOAJ, OAJI and ProQuest Index are in process of evaluation. 

Journal articles are evaluated as "Double-Blind Peer Review"