Research Article
BibTex RIS Cite

Coenzyme Q10 as a protective and therapeutic agent against cisplatin-induced multi-organ toxicity in rats

Year 2025, Volume: 6 Issue: 5, 470 - 475, 24.10.2025

Abstract

Aims: Cisplatin (CP) is a widely used chemotherapeutic agent whose dose-limiting toxicities are well documented. These toxicities are primarily mediated through oxidative stress, inflammation, and cellular injury. Coenzyme Q10 (CoQ10), a mitochondrial antioxidant and redox modulator, has shown promise in mitigating these toxic effects. The aim of this study was to evaluate the protective and therapeutic potential of CoQ10 against CP-induced multi-organ toxicity in rats.
Methods: Male Sprague Dawley rats were divided into five (n=6 each) groups: control; CP; CoQ10; CoQ10 pre-treatment (PT); and CoQ10 pre-and post-treatment (PPT). CoQ10 was administered at 10 mg/kg/day intraperitoneally, based its antioxidant and cytoprotective efficacy. Biochemical markers of oxidative stress (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (4-HNE) and 8-hydroxydeoxyguanosine (8-OHdG)), antioxidant defences (reduced glutathione (GSH), catalase (CAT) and paraoxonase (PON)) and inflammation (adenosine deaminase (ADA)) were assessed in serum samples.
Results: CP administration significantly increased oxidative and nitrosative stress markers, while suppressing endogenous antioxidants and elevating inflammatory mediators. CoQ10 treatment, particularly the PPT protocol, markedly restored antioxidant enzyme activities. This reduced lipid peroxidation and DNA oxidative lesions, while suppressing ADA activity. Notably, 8-OHdG levels decreased significantly, highlighting CoQ10’s role in preserving genomic integrity.
Conclusion: CoQ10 exerts significant cytoprotective effects against CP-induced oxidative and inflammatory damage. PPT with CoQ10 was more effective than PT, emphasising the therapeutic value of pre-emptive antioxidant supplementation. These findings suggest that CoQ10 could be a beneficial addition to chemotherapy regimens involving CP.

Ethical Statement

Ethics committee approval was received from Kafkas University Animal Experiments Local Ethics Committee (Date: 26.12.2019, Approval No: KAÜ-HADYEK/2019-155).

Supporting Institution

This study supported by Scientific Research Projects Committee of Kafkas University (Project No: 2021-FM-61).

Project Number

2021-FM-61

Thanks

I confirm that Dr. Onur Atakişi and Melek Öztürkler, who provided assistance during the study, do not claim authorship and have no objection to the publication of the related parts of the study. They have given their full consent for the use of their contributions in this work. The author sincerely would like to thank Prof. Dr. Onur Atakisi (Kafkas University) for his kindly providing laboratory facilities and critical directorship. The author also thanks to Melek Ozturkler from Kafkas University Biochemistry Research Laboratory for her help in measurements.

References

  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi:10.1016/j.ejphar.2014.07.025
  • Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115-124. doi:10.1097/MAJ.0b013e 31812dfe1e
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007. doi:10.1038/sj.ki.5002786
  • Fang CY, Lou DY, Zhou LQ, et al. Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin. 2021;42(12): 1951-1969. doi:10.1038/s41401-021-00620-9
  • Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol. 2022; 206:115323. doi:10.1016/j.bcp.2022.115323
  • Herrera-Perez Z, Gretz N, Dweep H. A comprehensive review on the genetic regulation of cisplatin-induced nephrotoxicity. Curr Genomics. 2016;17:279-293. doi:10.2174/1389202917666160202220555
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. doi:10.1016/j.cbi.2005.12.009
  • Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003; 23(5):460-464. doi:10.1016/S0270-9295(03)00089-5
  • Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative stress and inflammation caused by cisplatin ototoxicity. Antioxidants (Basel). 2021;10(12):1919. doi:10.3390/antiox10121919
  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363-383. doi:10.1038/s41580-020-0230-3
  • Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193-199. doi:10.1016/j.redox.2014.12.011
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10. 1155/2014/360438
  • Valavanidis A, Vlachogianni T, Fiotakis K. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C. 2009;27(2):120-139. doi:10.1080/ 10590500902885684
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-183. doi:10.1016/j.redox.2015.01.002
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford, UK: Oxford University Press; 2015. doi:10.1093/acprof:oso/ 9780198717478.001.0001
  • Abd Rashid N, Abd Halim SAS, Teoh SL, et al. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother. 2021;144:112328. doi:10.1016/j.biopha.2021.112328
  • Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin: the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. doi:10.3390/ijms241914574
  • Imam F, Kothiyal P, Alshehri S, et al. Hirsutidin prevents cisplatin-evoked renal toxicity by reducing oxidative stress/inflammation and restoring the endogenous enzymatic and non-enzymatic level. Biomedicines. 2023;11(3):804. doi:10.3390/biomedicines11030804
  • Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1-2):171-199. doi:10.1016/j.bbamem. 2003.11.012
  • Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Nutr. 2010;26(3):250-254. doi:10.1016/j.nut.2009.08.008
  • Fatima S, Al-Mohaimeed N, Al-Shaikh Y, et al. Combined treatment of epigallocatechin gallate and coenzyme Q10 attenuates cisplatin-induced nephrotoxicity via suppression of oxidative/nitrosative stress, inflammation and cellular damage. Food Chem Toxicol. 2016;94:213-220. doi:10.1016/j.fct.2016.05.023
  • Fatima S, Suhail N, Alrashed M, et al. Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol. 2021;35(4):e22701. doi:10.1002/jbt.22701
  • Sunar M, Yazici GN, Mammadov R, Kurt N, Arslan YK, Süleyman H. Coenzyme Q10 effect on cisplatin-induced oxidative retinal injury in rats. Cutan Ocul Toxicol. 2021;40(4):312-318. doi:10.1080/15569527.2021. 1949336
  • Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology. 2010;274(1-3):49-56. doi:10.1016/j.tox.2010.05.007
  • Hooshangi Shayesteh MR, Hami Z, Chamanara M, Parvizi MR, Golaghaei A, Nassireslami E. Evaluation of the protective effect of coenzyme Q10 on hepatotoxicity caused by acute phosphine poisoning. Int J Immunopathol Pharmacol. 2024;38:3946320241250286. doi:10. 1177/03946320241250286
  • Zhao L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatol J Cardiol. 2019;22(5):232-239. doi:10. 14744/AnatolJCardiol.2019.83710
  • Botelho AFM, Lempek MR, Branco SEMT, et al. Coenzyme Q10 cardioprotective effects against doxorubicin-induced cardiotoxicity in Wistar rat. Cardiovasc Toxicol. 2020;20(3):222-234. doi:10.1007/s12012-019-09547-4
  • Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol. 1979;135(3):372-376. doi:10.1016/0002-9378(79)90708-7
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62-71. doi:10.1006/niox.2000.0319
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
  • da Silva Machado C, Mendonça LM, Venancio VP, Bianchi ML, Antunes LM. Coenzyme Q10 protects PC12 cells from cisplatin-induced DNA damage and neurotoxicity. Neurotoxicology. 2013;36:10-16. doi:10.1016/j.neuro.2013.02.004
  • Kaya Y, Çebi A, Söylemez N, Demir H, Alp HH, Bakan E. Correlations between oxidative DNA damage, oxidative stress and coenzyme Q10 in patients with coronary artery disease. Int J Med Sci. 2012;9(8):621-626. doi:10.7150/ijms.4768
  • dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86(8):1233-1250. doi:10.1007/s00204-012-0821-7
  • Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi:10.1155/2014/ 967826
  • Doma AO, Cristina RT, Dumitrescu E, et al. The antioxidant effect of Aronia melanocarpa extract in rats oxidative stress induced by cisplatin administration. J Trace Elem Med Biol. 2023;79:127205. doi:10.1016/j.jtemb.2023.127205
  • Littarru GP, Lambrechts P. Coenzyme Q10: multiple benefits in one ingredient. OCL. 2011;18(2):76-82. doi:10.1684/ ocl.2011.0374
  • Bentinger M, Tekle M, Dallner G. Coenzyme Q–biosynthesis and functions. Biochem Biophys Res Commun. 2010;396(1):74-79. doi:10. 1016/j.bbrc.2010.02.147
  • Zhao S, Wu W, Liao J, et al. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett. 2022;27(1):57. doi:10.1186/s11658-022-00361-5
  • Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem. 2014;21(2):230-237. doi:10.2174/09298673113209990181
  • Şaman E, Cebova M, Barta A, et al. Combined therapy with simvastatin- and coenzyme-Q10-loaded nanoparticles upregulates the Akt-eNOS pathway in experimental metabolic syndrome. Int J Mol Sci. 2022;24(1): 276. doi:10.3390/ijms24010276
  • Wang F, Yuan Q, Chen F, et al. Fundamental mechanisms of the cell death caused by nitrosative stress. Front Cell Dev Biol. 2021;9:742483. doi:10.3389/fcell.2021.742483
  • Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-κB/TGF-β/MMP-9 pathways. Int Immunopharmacol. 2021;92:107347. doi:10.1016/j.intimp.2020.107347
  • Khalifa EA, Ahmed NA, Hashem KS, Allah AG. Therapeutic effects of the combination of alpha-lipoic acid (ALA) and coenzyme Q10 (CoQ10) on cisplatin-induced nephrotoxicity. Int J Inflamm. 2020;2020:5369797. doi:10.1155/2020/5369797
  • Hossain M, Suchi TT, Samiha F, et al. Coenzyme Q10 ameliorates carbofuran induced hepatotoxicity and nephrotoxicity in Wistar rats. Heliyon. 2023;9(2):e13727. doi:10.1016/j.heliyon.2023.e13727
  • Shabaan DA, Mostafa N, El-Desoky MM, Arafat EA. Coenzyme Q10 protects against doxorubicin-induced cardiomyopathy via antioxidant and anti-apoptotic pathway. Tissue Barriers. 2023;11(1):2019504. doi:10.1080/21688370.2021.2019504
  • Dai S, Tian Z, Zhao D, et al. Effects of Coenzyme Q10 supplementation on biomarkers of oxidative stress in adults: a GRADE-assessed systematic review and updated meta-analysis of randomized controlled trials. Antioxidants (Basel). 2022;11(7):1360. doi:10.3390/antiox11071360
  • Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with Parkinson’s disease. Neurosci Lett. 2010;469(1):159-163. doi:10.1016/j.neulet.2009.11.065

Sıçanlarda sisplatin kaynaklı çoklu organ toksisitesine karşı koruyucu ve terapötik ajan olarak koenzim Q10

Year 2025, Volume: 6 Issue: 5, 470 - 475, 24.10.2025

Abstract

Amaç: Sisplatin (CP), doz sınırlayıcı toksisiteleri iyi belgelenmiş, yaygın olarak kullanılan bir kemoterapötik ajandır. Bu toksisiteleri öncelikle oksidatif stres, inflamasyon ve hücresel hasar aracılık eder. Mitokondriyal bir antioksidan ve redoks modülatörü olan koenzim Q10 (CoQ10), bu toksik etkileri hafifletmede umut verici sonuçlar göstermiştir. Bu çalışmanın amacı, sıçanlarda sisplatin kaynaklı çoklu organ toksisitesine karşı CoQ10'un koruyucu ve terapötik potansiyelini değerlendirmektir.
Yöntemler: Erkek Sprague Dawley sıçanlar beş gruba (her biri n=6) ayrıldı: Kontrol; CP; CoQ10; CoQ10 ön tedavi (PT); ve CoQ10 ön ve son tedavi (PPT). CoQ10, antioksidan ve sitoprotektif etkinliğine göre 10 mg/kg/gün intraperitoneal olarak uygulandı. Oksidatif stresin biyokimyasal belirteçleri (malondialdehit (MDA), nitrik oksit (NO), 4-hidroksinonenal (4-HNE) ve 8-hidroksideoksiguanosin (8-OHdG)), antioksidan savunma (indirgenmiş glutatyon (GSH), katalaz (CAT) ve paraoksonaz (PON)) ve inflamasyon (adenozin deaminaz (ADA)) serum örneklerinde değerlendirildi.
Sonuçlar: CP uygulaması, endojen antioksidanları baskılarken ve inflamatuar mediatörleri yükselterek oksidatif ve nitrozatif stres belirteçlerini önemli ölçüde artırdı. CoQ10 tedavisi, özellikle tedavi öncesi ve sonrası protokol, antioksidan enzim aktivitelerini belirgin şekilde geri kazandırdı. Bu, ADA aktivitesini baskılarken lipit peroksidasyonunu ve DNA oksidatif lezyonlarını azalttı. Özellikle, 8-OHdG düzeyleri önemli ölçüde azaldı, bu da CoQ10'un genomik bütünlüğü korumadaki rolünü vurguladı.
Sonuç: CoQ10, CP'nin neden olduğu oksidatif ve inflamatuar hasara karşı önemli sitoprotektif etkiler gösterir. CoQ10 ile tedavi öncesi ve sonrası, tedavi öncesinden daha etkiliydi, bu da önleyici antioksidan takviyesinin terapötik değerini vurgulamaktadır. Bu bulgular, CoQ10'un sisplatin içeren kemoterapi rejimlerine faydalı bir katkı olabileceğini göstermektedir.

Project Number

2021-FM-61

References

  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi:10.1016/j.ejphar.2014.07.025
  • Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115-124. doi:10.1097/MAJ.0b013e 31812dfe1e
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007. doi:10.1038/sj.ki.5002786
  • Fang CY, Lou DY, Zhou LQ, et al. Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin. 2021;42(12): 1951-1969. doi:10.1038/s41401-021-00620-9
  • Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol. 2022; 206:115323. doi:10.1016/j.bcp.2022.115323
  • Herrera-Perez Z, Gretz N, Dweep H. A comprehensive review on the genetic regulation of cisplatin-induced nephrotoxicity. Curr Genomics. 2016;17:279-293. doi:10.2174/1389202917666160202220555
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. doi:10.1016/j.cbi.2005.12.009
  • Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003; 23(5):460-464. doi:10.1016/S0270-9295(03)00089-5
  • Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative stress and inflammation caused by cisplatin ototoxicity. Antioxidants (Basel). 2021;10(12):1919. doi:10.3390/antiox10121919
  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363-383. doi:10.1038/s41580-020-0230-3
  • Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193-199. doi:10.1016/j.redox.2014.12.011
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10. 1155/2014/360438
  • Valavanidis A, Vlachogianni T, Fiotakis K. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C. 2009;27(2):120-139. doi:10.1080/ 10590500902885684
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-183. doi:10.1016/j.redox.2015.01.002
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford, UK: Oxford University Press; 2015. doi:10.1093/acprof:oso/ 9780198717478.001.0001
  • Abd Rashid N, Abd Halim SAS, Teoh SL, et al. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother. 2021;144:112328. doi:10.1016/j.biopha.2021.112328
  • Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin: the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. doi:10.3390/ijms241914574
  • Imam F, Kothiyal P, Alshehri S, et al. Hirsutidin prevents cisplatin-evoked renal toxicity by reducing oxidative stress/inflammation and restoring the endogenous enzymatic and non-enzymatic level. Biomedicines. 2023;11(3):804. doi:10.3390/biomedicines11030804
  • Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1-2):171-199. doi:10.1016/j.bbamem. 2003.11.012
  • Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Nutr. 2010;26(3):250-254. doi:10.1016/j.nut.2009.08.008
  • Fatima S, Al-Mohaimeed N, Al-Shaikh Y, et al. Combined treatment of epigallocatechin gallate and coenzyme Q10 attenuates cisplatin-induced nephrotoxicity via suppression of oxidative/nitrosative stress, inflammation and cellular damage. Food Chem Toxicol. 2016;94:213-220. doi:10.1016/j.fct.2016.05.023
  • Fatima S, Suhail N, Alrashed M, et al. Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol. 2021;35(4):e22701. doi:10.1002/jbt.22701
  • Sunar M, Yazici GN, Mammadov R, Kurt N, Arslan YK, Süleyman H. Coenzyme Q10 effect on cisplatin-induced oxidative retinal injury in rats. Cutan Ocul Toxicol. 2021;40(4):312-318. doi:10.1080/15569527.2021. 1949336
  • Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology. 2010;274(1-3):49-56. doi:10.1016/j.tox.2010.05.007
  • Hooshangi Shayesteh MR, Hami Z, Chamanara M, Parvizi MR, Golaghaei A, Nassireslami E. Evaluation of the protective effect of coenzyme Q10 on hepatotoxicity caused by acute phosphine poisoning. Int J Immunopathol Pharmacol. 2024;38:3946320241250286. doi:10. 1177/03946320241250286
  • Zhao L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatol J Cardiol. 2019;22(5):232-239. doi:10. 14744/AnatolJCardiol.2019.83710
  • Botelho AFM, Lempek MR, Branco SEMT, et al. Coenzyme Q10 cardioprotective effects against doxorubicin-induced cardiotoxicity in Wistar rat. Cardiovasc Toxicol. 2020;20(3):222-234. doi:10.1007/s12012-019-09547-4
  • Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol. 1979;135(3):372-376. doi:10.1016/0002-9378(79)90708-7
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62-71. doi:10.1006/niox.2000.0319
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
  • da Silva Machado C, Mendonça LM, Venancio VP, Bianchi ML, Antunes LM. Coenzyme Q10 protects PC12 cells from cisplatin-induced DNA damage and neurotoxicity. Neurotoxicology. 2013;36:10-16. doi:10.1016/j.neuro.2013.02.004
  • Kaya Y, Çebi A, Söylemez N, Demir H, Alp HH, Bakan E. Correlations between oxidative DNA damage, oxidative stress and coenzyme Q10 in patients with coronary artery disease. Int J Med Sci. 2012;9(8):621-626. doi:10.7150/ijms.4768
  • dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86(8):1233-1250. doi:10.1007/s00204-012-0821-7
  • Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi:10.1155/2014/ 967826
  • Doma AO, Cristina RT, Dumitrescu E, et al. The antioxidant effect of Aronia melanocarpa extract in rats oxidative stress induced by cisplatin administration. J Trace Elem Med Biol. 2023;79:127205. doi:10.1016/j.jtemb.2023.127205
  • Littarru GP, Lambrechts P. Coenzyme Q10: multiple benefits in one ingredient. OCL. 2011;18(2):76-82. doi:10.1684/ ocl.2011.0374
  • Bentinger M, Tekle M, Dallner G. Coenzyme Q–biosynthesis and functions. Biochem Biophys Res Commun. 2010;396(1):74-79. doi:10. 1016/j.bbrc.2010.02.147
  • Zhao S, Wu W, Liao J, et al. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett. 2022;27(1):57. doi:10.1186/s11658-022-00361-5
  • Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem. 2014;21(2):230-237. doi:10.2174/09298673113209990181
  • Şaman E, Cebova M, Barta A, et al. Combined therapy with simvastatin- and coenzyme-Q10-loaded nanoparticles upregulates the Akt-eNOS pathway in experimental metabolic syndrome. Int J Mol Sci. 2022;24(1): 276. doi:10.3390/ijms24010276
  • Wang F, Yuan Q, Chen F, et al. Fundamental mechanisms of the cell death caused by nitrosative stress. Front Cell Dev Biol. 2021;9:742483. doi:10.3389/fcell.2021.742483
  • Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-κB/TGF-β/MMP-9 pathways. Int Immunopharmacol. 2021;92:107347. doi:10.1016/j.intimp.2020.107347
  • Khalifa EA, Ahmed NA, Hashem KS, Allah AG. Therapeutic effects of the combination of alpha-lipoic acid (ALA) and coenzyme Q10 (CoQ10) on cisplatin-induced nephrotoxicity. Int J Inflamm. 2020;2020:5369797. doi:10.1155/2020/5369797
  • Hossain M, Suchi TT, Samiha F, et al. Coenzyme Q10 ameliorates carbofuran induced hepatotoxicity and nephrotoxicity in Wistar rats. Heliyon. 2023;9(2):e13727. doi:10.1016/j.heliyon.2023.e13727
  • Shabaan DA, Mostafa N, El-Desoky MM, Arafat EA. Coenzyme Q10 protects against doxorubicin-induced cardiomyopathy via antioxidant and anti-apoptotic pathway. Tissue Barriers. 2023;11(1):2019504. doi:10.1080/21688370.2021.2019504
  • Dai S, Tian Z, Zhao D, et al. Effects of Coenzyme Q10 supplementation on biomarkers of oxidative stress in adults: a GRADE-assessed systematic review and updated meta-analysis of randomized controlled trials. Antioxidants (Basel). 2022;11(7):1360. doi:10.3390/antiox11071360
  • Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with Parkinson’s disease. Neurosci Lett. 2010;469(1):159-163. doi:10.1016/j.neulet.2009.11.065
There are 47 citations in total.

Details

Primary Language English
Subjects Chemotherapy, Public Health (Other)
Journal Section Research Articles [en] Araştırma Makaleleri [tr]
Authors

Kezban Yıldız Dalgınlı 0000-0002-1483-348X

Onur Atakisi 0000-0003-1183-6076

Melek Öztürkler Dündar 0000-0002-2917-6371

Project Number 2021-FM-61
Publication Date October 24, 2025
Submission Date August 12, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 6 Issue: 5

Cite

AMA Yıldız Dalgınlı K, Atakisi O, Öztürkler Dündar M. Coenzyme Q10 as a protective and therapeutic agent against cisplatin-induced multi-organ toxicity in rats. J Med Palliat Care / JOMPAC / jompac. October 2025;6(5):470-475.

TR DİZİN ULAKBİM and International Indexes (1d)

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]



google-scholar.png


crossref.jpg

f9ab67f.png

asos-index.png


COPE.jpg

icmje_1_orig.png

cc.logo.large.png

ncbi.png


pn6krf5.jpg


Our journal is in TR-Dizin, DRJI (Directory of Research Journals Indexing, General Impact Factor, Google Scholar, Researchgate, CrossRef (DOI), ROAD, ASOS Index, Turk Medline Index, Eurasian Scientific Journal Index (ESJI), and Turkiye Citation Index.

EBSCO, DOAJ, OAJI and ProQuest Index are in process of evaluation. 

Journal articles are evaluated as "Double-Blind Peer Review"