Review
BibTex RIS Cite

Biomedical applications and advances in microfluidic systems

Year 2022, Volume: 1 Issue: 2, 93 - 104, 16.08.2022

Abstract

The microfluidic field involves the use of microstructured devices that typically have micrometer sizes and allow precise processing of low volumes. The nano field is the main field that includes science fields such as earth science, organic chemistry, molecular biology, semiconductor physics, micromanufacturing where the control of the atomic and molecular unit takes place. Multi-stage systems with micro and nano volumes have become widespread in microfluidic engineering thanks to micrometer-sized channels. The fluids in the systems circulate in micrometer-sized channels. Factors affecting fluid behavior such as surface tension, energy use and fluid resistance in the system are examined. Microfluidic devices and systems have a variety of functions that can replace biomedical analysis and diagnostics. There is a small amount of sample and reagent consumption in a short time. A higher level of system integration is achieved, thanks to the potential for advanced automation, control and high-efficiency processing. Miniaturization results in better diagnostic speed, cost-effectiveness, ergonomics and precision. The trend of nanotechnology to develop more robust, better quality, longer life, cheaper, lighter and smaller devices forms the basis of miniaturization. It provides enhanced physical properties such as bioavailability by operating the active pharmaceutical ingredients alone or in combination with biodegradable polymeric carriers under high pressure conditions.

In this review, the microfluidic technology and the components that make up the system will be described. A literature review will be conducted by considering completed or ongoing studies. Current research topics and possible future research in technologies used in the microfluidic field will be presented.

References

  • Ansari, M.H., Hassan, S., Qurashi, A. & Khanday, F.A. (2016). Microfluidic-integrated DNA nanobiosensors. Biosensors and Bioelectronics, 85, 247-260.
  • Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraji-Dana, M. & Faraon, A. (2018). MEMS-tunable dielectric metasurface lens. Nature communications, 9(1), 1-9.
  • Aryasomayajula, A., Bayat, P., Rezai, P. & Selvaganapathy, P.R. (2017). Microfluidic devices and their applications. In Springer handbook of nanotechnology (pp. 487-536). Springer, Berlin, Heidelberg.
  • Baydoun, M., Treizeibrei, A., Follet. J. & Senez, V. (2020). Organ culture of mucosal biopsies of human small intestine. Micromachines, 11(2), 150.
  • Bhatia, S.N. & Ingber, D.E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760-772.
  • Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10), 1720-1742.
  • Bragheri, F., Vázquez, R.M. & Osellame, R. (2019). Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization (2nd ed.). Elsevier Inc.
  • Bruijns, B., Van Asten, A., Tiggelaar, R. & Gardeniers, H. (2016). Microfluidic devices for forensic DNA analysis: A Review. Biosensors, 6(3), 41.
  • Cardoso, V.F., Catarino, S.O., Lanceros-Mendez, S. & Minas, G. (2011, March). Lab-on-a-chip using acoustic streaming for mixing and pumping fluids. In 1st Portuguese Biomedical Engineering Meeting (pp. 1-4). IEEE.
  • Chang, C.W., Cheng, Y.J., Tu, M., Chen, Y.H., Peng, C.C., Liao, W.H. & Tung, Y. C. (2014). A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on a Chip, 14(19), 3762-3772.
  • Chiu, D.T., Demello, A.J., Di Carlo, D., Doyle, P.S., Hansen, C., Maceiczyk, R.M. & Wootton, R.C. (2017). Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem, 2(2), 201-223.
  • Chokkalingam, V., Tel, J., Wimmers, F., Liu, X., Semenov, S., Thiele, J., ... & Huck, W.T. (2013). Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip, 13(24), 4740-4744.
  • Colijn, C., Cohen, T., Ganesh, A. & Murray, M. (2011). Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PloS one, 6(3), e18327.
  • Dutse, S.W. & Yusof, N.A. (2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: An Overview. Sensors, 11(6), 5754-5768.
  • Duval, K., Grover, H., Han, L.H., Mou, Y., Pegoraro, A.F., Fredberg, J. & Chen, Z. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology, 32(4), 266-277.
  • Edmondson, R., Broglie, J.J., Adcock, A.F. & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207-218.
  • Esch, E.W., Bahinski, A. & Huh, D. (2015). Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 14(4), 248-260.
  • Folch, A. & Toner, M. (2008). Cellular micro models on biocompatible materials. Biotechnology Programs, 14(3), 388-392.
  • Friend, J. & Yeo, L. (2010). Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 4(2), 026502.
  • Fu, J., Wu, L., Qiao, Y., Tu, J. & Lu, Z. (2020). Microfluidic systems applied in solid-state nanopore sensors. Micromachines, 11(3), 332.
  • Ginty P.J. & et al., (2005). Drug delivery goes supercritical. Materials, 8(8), 42-48.
  • Guijt, R. M. & Manz, A. (2018). Miniaturised total chemical-analysis systems (ΜTAS) that periodically convert chemical into electronic information. Sensors and Actuators B: Chemical, 273, 1334-1345.
  • Hou, X., Zhang, Y.S., Santiago, G.T.D., Alvarez, M. M., Ribas, J., Jonas, S.J., ... & Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Materials, 2(5), 1-15.
  • Huh, D., Hamilton, G.A. & Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in Cell Biology, 21(12), 745-754.
  • Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., ... & Lamperska, K. (2018). 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Archives of Medical Science, 14(4), 910-919.
  • Krishna, K. S., Li, Y., Li, S. & Kumar, C.S. (2013). Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced Drug Delivery Reviews, 65(11-12), 1470-1495.
  • Lai, K.Y.T., Yang, Y.T. & Lee, C.Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85-93.
  • Lee CY-P., Lin T.P.R. Renia L. & Lisa F.P. (2020). Serological approaches for COVID-19: Epidemiologic perspective on surveillance and control. Frontiers in Immunology, (11 -879).
  • Lee, H., Xu, L., Koh, D., Nyayapathi, N. & Oh, K. W. (2014). Various on-chip sensors with microfluidics for biological applications. Sensors, 14(9), 17008-17036.
  • Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., ... & Weitz, D.A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15), 5646-5683.
  • Luo, G., Du, L., Wang, Y. & Wang, K. (2019). Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano-and micro-materials. Particuology, 45, 1-19.
  • Luo, T., Fan, L., Zhu, R. & Sun, D. (2019). Microfluidic single-cell manipulation and analysis: Methods and applications. Micromachines, 10(2), 104.
  • Luo, Y., Zhao, J., He, C., Lu, Z. & Lu, X. (2020). Miniaturized platform for individual coral polyps culture and monitoring. Micromachines, 11(2), 127.
  • MacConnell, A. B., Price, A.K. & Paegel, B.M. (2017). An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Combinatorial Science, 19(3), 181-192.
  • Otlu B., Tanriverdi, E.S. & Yakupoğulları, Y. (2020). Laboratory Diagnosis of COVID-19, In:Coronavirus Disease 2019 (COVID-19): Turkey Perspective, 1nd ed (Eds Taşova Y, Çelen MK): 29-40. Ankara, Hipokrat Yayıncılık.
  • Sackmann, E. K., Fulton, A.L. & Beebe, D.J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189.
  • Saggiomo, V. & Velders, A.H. (2015). Simple 3D printed scaffold‐removal method for the fabrication of intricate microfluidic devices. Advanced Science, 2(9), 1500125.
  • Samiei, E., Tabrizian, M. & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376-2396.
  • Shi, H., Nie, K., Dong, B., Long, M., Xu, H. & Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal, 361, 635-650.
  • Shirzadfar, H. & Khanahmadi, M. (2018). Review on structure, function and applications of microfluidic systems. Int J Biosen Bioelectron, 4(6), 263‒265.
  • Suwannaphan, T., Srituravanich, W., Sailasuta, A., Piyaviriyakul, P., Bhanpattanakul, S., Jeamsaksiri, W., ... & Pimpin, A. (2019). Investigation of leukocyte viability and damage in spiral microchannel and contraction-expansion array. Micromachines, 10(11), 772.
  • Taylor, B.J., Howell, A., Martin, K.A., Manage, D. P., Gordy, W., Campbell, S.D., ... & Yanow, S.K. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13(1), 1-11.
  • Tewari Kumar, P., Decrop, D., Safdar, S., Passaris, I., Kokalj, T., Puers, R., ... & Lammertyn, J. (2020). Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers. Micromachines, 11(3), 308.
  • Trantidou, T., Elani, Y., Parsons, E. & Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & Nanoengineering, 3(1), 1-9.
  • Volpatti, L.R., & Yetisen, A.K. (2014). Commercialization of microfluidic devices. Trends in biotechnology, 32(7), 347-350.
  • Wang, A., Koh, D., Schneider, P., Breloff, E. & Oh, K.W. (2019). A compact, syringe-assisted, vacuum-driven micropumping device. Micromachines, 10(8), 543.
  • Williams, M.J., Lee, N.K., Mylott, J.A., Mazzola, N., Ahmed, A. & Abhyankar, V.V. (2019). A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines, 10(6), 360.
  • Whitesides, G. (2006). The origins and the future of microfluidics. Nature, 442, 368-373.
  • Jung, W., Han, J., Choi, J.W. & Ahn, C.H. (2015). Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering, 132, 46-57.
  • Xu, Z.R., Yang, C.G., Liu, C.H., Zhou, Z., Fang, J. & Wang, J.H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. Talanta, 80(3), 1088-1093.
  • Young, E.W. & Beebe, D.J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews, 39(3), 1036-1048.
  • Zhou, J., Khodakov, D.A., Ellis, A.V. & Voelcker, N.H. (2012). Surface modification for PDMS‐based microfluidic devices. Electrophoresis, 33(1), 89-104.

Mikroakışkan sistemlerde biyomedikal uygulamalar ve gelişmeler

Year 2022, Volume: 1 Issue: 2, 93 - 104, 16.08.2022

Abstract

Mikroakışkan alan, tipik olarak mikrometre boyutlarına sahip olan ve düşük hacimlerin hassas şekilde işlenmesine izin veren mikro yapılı cihazların kullanımını içerir. Nano alan, yer bilimleri, organik kimya, moleküler biyoloji, yarı iletken fiziği, mikro imalat gibi bilim alanlarını içeren atomik ve moleküler birimin kontrolünün gerçekleştiği ana alandır. Mikro ve nano hacimli çok kademeli sistemler, mikrometre boyutlu kanallar sayesinde mikroakışkan mühendisliğinde yaygınlaşmıştır. Sistemlerdeki akışkanlar mikrometre boyutundaki kanallarda dolaşır. Sistemdeki yüzey gerilimi, enerji kullanımı ve akışkan direnci gibi akışkan davranışını etkileyen faktörler incelenir. Mikroakışkan cihazlar ve sistemler, biyomedikal analiz ve teşhisin yerini alabilecek çeşitli işlevlere sahiptir. Kısa sürede az miktarda numune ve reaktif tüketimi vardır. Gelişmiş otomasyon, kontrol ve yüksek verimli işleme potansiyeli sayesinde daha yüksek düzeyde sistem entegrasyonu elde edilir. Minyatürleştirme, daha iyi tanılama hızı, maliyet etkinliği, ergonomi ve hassasiyet sağlar. Nanoteknolojinin daha sağlam, daha kaliteli, daha uzun ömürlü, daha ucuz, daha hafif ve daha küçük cihazlar geliştirme eğilimi, minyatürleştirmenin temelini oluşturmaktadır. Aktif farmasötik bileşenleri tek başına veya yüksek basınç koşulları altında biyolojik olarak parçalanabilen polimerik taşıyıcılarla kombinasyon halinde çalıştırarak biyoyararlanım gibi gelişmiş fiziksel özellikler sağlar.

Bu derlemede, mikroakışkan teknolojisi ve sistemi oluşturan bileşenler açıklanacaktır. Tamamlanmış veya devam eden çalışmalar dikkate alınarak literatür taraması yapılacaktır. Mikroakışkan alanında kullanılan teknolojilerde mevcut araştırma konuları ve gelecekteki olası araştırmalar sunulacaktır.

References

  • Ansari, M.H., Hassan, S., Qurashi, A. & Khanday, F.A. (2016). Microfluidic-integrated DNA nanobiosensors. Biosensors and Bioelectronics, 85, 247-260.
  • Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraji-Dana, M. & Faraon, A. (2018). MEMS-tunable dielectric metasurface lens. Nature communications, 9(1), 1-9.
  • Aryasomayajula, A., Bayat, P., Rezai, P. & Selvaganapathy, P.R. (2017). Microfluidic devices and their applications. In Springer handbook of nanotechnology (pp. 487-536). Springer, Berlin, Heidelberg.
  • Baydoun, M., Treizeibrei, A., Follet. J. & Senez, V. (2020). Organ culture of mucosal biopsies of human small intestine. Micromachines, 11(2), 150.
  • Bhatia, S.N. & Ingber, D.E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760-772.
  • Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10), 1720-1742.
  • Bragheri, F., Vázquez, R.M. & Osellame, R. (2019). Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization (2nd ed.). Elsevier Inc.
  • Bruijns, B., Van Asten, A., Tiggelaar, R. & Gardeniers, H. (2016). Microfluidic devices for forensic DNA analysis: A Review. Biosensors, 6(3), 41.
  • Cardoso, V.F., Catarino, S.O., Lanceros-Mendez, S. & Minas, G. (2011, March). Lab-on-a-chip using acoustic streaming for mixing and pumping fluids. In 1st Portuguese Biomedical Engineering Meeting (pp. 1-4). IEEE.
  • Chang, C.W., Cheng, Y.J., Tu, M., Chen, Y.H., Peng, C.C., Liao, W.H. & Tung, Y. C. (2014). A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on a Chip, 14(19), 3762-3772.
  • Chiu, D.T., Demello, A.J., Di Carlo, D., Doyle, P.S., Hansen, C., Maceiczyk, R.M. & Wootton, R.C. (2017). Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem, 2(2), 201-223.
  • Chokkalingam, V., Tel, J., Wimmers, F., Liu, X., Semenov, S., Thiele, J., ... & Huck, W.T. (2013). Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip, 13(24), 4740-4744.
  • Colijn, C., Cohen, T., Ganesh, A. & Murray, M. (2011). Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PloS one, 6(3), e18327.
  • Dutse, S.W. & Yusof, N.A. (2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: An Overview. Sensors, 11(6), 5754-5768.
  • Duval, K., Grover, H., Han, L.H., Mou, Y., Pegoraro, A.F., Fredberg, J. & Chen, Z. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology, 32(4), 266-277.
  • Edmondson, R., Broglie, J.J., Adcock, A.F. & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207-218.
  • Esch, E.W., Bahinski, A. & Huh, D. (2015). Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 14(4), 248-260.
  • Folch, A. & Toner, M. (2008). Cellular micro models on biocompatible materials. Biotechnology Programs, 14(3), 388-392.
  • Friend, J. & Yeo, L. (2010). Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 4(2), 026502.
  • Fu, J., Wu, L., Qiao, Y., Tu, J. & Lu, Z. (2020). Microfluidic systems applied in solid-state nanopore sensors. Micromachines, 11(3), 332.
  • Ginty P.J. & et al., (2005). Drug delivery goes supercritical. Materials, 8(8), 42-48.
  • Guijt, R. M. & Manz, A. (2018). Miniaturised total chemical-analysis systems (ΜTAS) that periodically convert chemical into electronic information. Sensors and Actuators B: Chemical, 273, 1334-1345.
  • Hou, X., Zhang, Y.S., Santiago, G.T.D., Alvarez, M. M., Ribas, J., Jonas, S.J., ... & Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Materials, 2(5), 1-15.
  • Huh, D., Hamilton, G.A. & Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in Cell Biology, 21(12), 745-754.
  • Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., ... & Lamperska, K. (2018). 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Archives of Medical Science, 14(4), 910-919.
  • Krishna, K. S., Li, Y., Li, S. & Kumar, C.S. (2013). Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced Drug Delivery Reviews, 65(11-12), 1470-1495.
  • Lai, K.Y.T., Yang, Y.T. & Lee, C.Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85-93.
  • Lee CY-P., Lin T.P.R. Renia L. & Lisa F.P. (2020). Serological approaches for COVID-19: Epidemiologic perspective on surveillance and control. Frontiers in Immunology, (11 -879).
  • Lee, H., Xu, L., Koh, D., Nyayapathi, N. & Oh, K. W. (2014). Various on-chip sensors with microfluidics for biological applications. Sensors, 14(9), 17008-17036.
  • Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., ... & Weitz, D.A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15), 5646-5683.
  • Luo, G., Du, L., Wang, Y. & Wang, K. (2019). Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano-and micro-materials. Particuology, 45, 1-19.
  • Luo, T., Fan, L., Zhu, R. & Sun, D. (2019). Microfluidic single-cell manipulation and analysis: Methods and applications. Micromachines, 10(2), 104.
  • Luo, Y., Zhao, J., He, C., Lu, Z. & Lu, X. (2020). Miniaturized platform for individual coral polyps culture and monitoring. Micromachines, 11(2), 127.
  • MacConnell, A. B., Price, A.K. & Paegel, B.M. (2017). An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Combinatorial Science, 19(3), 181-192.
  • Otlu B., Tanriverdi, E.S. & Yakupoğulları, Y. (2020). Laboratory Diagnosis of COVID-19, In:Coronavirus Disease 2019 (COVID-19): Turkey Perspective, 1nd ed (Eds Taşova Y, Çelen MK): 29-40. Ankara, Hipokrat Yayıncılık.
  • Sackmann, E. K., Fulton, A.L. & Beebe, D.J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189.
  • Saggiomo, V. & Velders, A.H. (2015). Simple 3D printed scaffold‐removal method for the fabrication of intricate microfluidic devices. Advanced Science, 2(9), 1500125.
  • Samiei, E., Tabrizian, M. & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376-2396.
  • Shi, H., Nie, K., Dong, B., Long, M., Xu, H. & Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal, 361, 635-650.
  • Shirzadfar, H. & Khanahmadi, M. (2018). Review on structure, function and applications of microfluidic systems. Int J Biosen Bioelectron, 4(6), 263‒265.
  • Suwannaphan, T., Srituravanich, W., Sailasuta, A., Piyaviriyakul, P., Bhanpattanakul, S., Jeamsaksiri, W., ... & Pimpin, A. (2019). Investigation of leukocyte viability and damage in spiral microchannel and contraction-expansion array. Micromachines, 10(11), 772.
  • Taylor, B.J., Howell, A., Martin, K.A., Manage, D. P., Gordy, W., Campbell, S.D., ... & Yanow, S.K. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13(1), 1-11.
  • Tewari Kumar, P., Decrop, D., Safdar, S., Passaris, I., Kokalj, T., Puers, R., ... & Lammertyn, J. (2020). Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers. Micromachines, 11(3), 308.
  • Trantidou, T., Elani, Y., Parsons, E. & Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & Nanoengineering, 3(1), 1-9.
  • Volpatti, L.R., & Yetisen, A.K. (2014). Commercialization of microfluidic devices. Trends in biotechnology, 32(7), 347-350.
  • Wang, A., Koh, D., Schneider, P., Breloff, E. & Oh, K.W. (2019). A compact, syringe-assisted, vacuum-driven micropumping device. Micromachines, 10(8), 543.
  • Williams, M.J., Lee, N.K., Mylott, J.A., Mazzola, N., Ahmed, A. & Abhyankar, V.V. (2019). A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines, 10(6), 360.
  • Whitesides, G. (2006). The origins and the future of microfluidics. Nature, 442, 368-373.
  • Jung, W., Han, J., Choi, J.W. & Ahn, C.H. (2015). Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering, 132, 46-57.
  • Xu, Z.R., Yang, C.G., Liu, C.H., Zhou, Z., Fang, J. & Wang, J.H. (2010). An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. Talanta, 80(3), 1088-1093.
  • Young, E.W. & Beebe, D.J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews, 39(3), 1036-1048.
  • Zhou, J., Khodakov, D.A., Ellis, A.V. & Voelcker, N.H. (2012). Surface modification for PDMS‐based microfluidic devices. Electrophoresis, 33(1), 89-104.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Primary Health Care
Journal Section Reviews
Authors

Zülfü Tüylek 0000-0002-9086-1327

Publication Date August 16, 2022
Submission Date May 31, 2022
Published in Issue Year 2022 Volume: 1 Issue: 2

Cite

APA Tüylek, Z. (2022). Mikroakışkan sistemlerde biyomedikal uygulamalar ve gelişmeler. Journal of Medical Topics and Updates, 1(2), 93-104.