Review
BibTex RIS Cite

HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS

Year 2019, Volume: 2 Issue: 1, 16 - 34, 31.07.2019

Abstract

In recent years, there has been
an increase in the amount of energy used in line with the increasing
population. The fuel demand in the transportation sector is mainly met by
fossil fuels. The reserve life of fossil fuels used in the world decreases
every year. Considering the problems arising from the use of fossil fuels, the
fuel need in the transportation sector can be met with renewable energy sources
and become continuous. Increasing CO2 emissions, environmental
pollution, and rising fossil fuel costs make it inevitable to look for
alternative energy sources in the near future. For this purpose, an energy
carrier such as hydrogen is needed for the use of renewable energy sources in
the transportation sector. Hydrogen is the most abundant element in nature and
its application area is wide. The hydrogen element is found free in nature in
diatomic structure. Hydrogen is odorless, tasteless, colorless and lightest
flammable gas. Hydrogen, a clean energy carrier, has a high energy content on a
mass basis. Hydrogen has a high combustion temperature, and it has no toxic
effect. In chemical reactions, only water vapor occurs after combustion.
According to petroleum derivatives, the yield of hydrogen is 1.13 times higher.
Hydrogen is used as a fuel cell in electricity generation in engine or gas
turbines. Considering the damage caused by fossil fuel derivatives to the
atmosphere and the earth, it will be understood how important hydrogen. In
terms of energy efficiency, resource diversity and environmental impacts, the
superiority of hydrogen over fossil fuels is evident. Hydrogen can be obtained
by using techniques such as gasification of hydrocarbonaceous compounds, steam
reforming, decomposition. Hydrogen is an infinite source of energy because it
is produced by electrolysis. Chemical and physical properties do not have a
negative impact on the environment and therefore have a clean fuel class. In
this study, the properties of hydrogen are explained and the relationship
between hydrogen and energy sources and hydrogen production methods are
explained. In addition, there is information about the kinds of hydrogen
storage and hydrogen applications in Turkey.

References

  • 1. Acar C. & Dinçer İ. (2019). Review and evaluation of hydrogen production options for better environment, Journal of Cleaner Production, 218(1), 835-849.
  • 2. Amikam G., Nativ P. & Gendel Y. (2018). Chlorine-free alkaline seawater electrolysis for hydrogen production, International Journal of Hydrogen Energy, 43(13), 6504-6514.
  • 3. Anzelmo B., Wilcox J. & Liguori S. (2018). Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions, Journal of Membrane Science, 568(15), 113-120.
  • 4. Aslan, E. (2014). Nanoparçaçık Temelli Hidrojen Üretimi. Yüksek Lisans Tezi, Konya, Türkiye.
  • 5. Ball, M., Weeda, M. & Veziroğlu, N.T. (2016). Compendium of Hydrogen Energy: Hydrogen Use, Safety and the Hydrogen Economy (Woodhead Publishing Series in Energy), 1 St Edition Woodhead Press, Miami, FL, USA.
  • 6. Barışık, O. B. (2015). Lignoselülozik Atıklardan Biyolojik Hidrojen Gazı Üretimi. Yüksek Lisans Tezi, İzmir, Türkiye.
  • 7. Bolatkhan K., Kossalbayev B.D., Zayadan B.K., Tomo T., Veziroglu T.N. & Allakhverdiev S.I. (2019). Hydrogen production from phototrophic microorganisms: Reality and perspectives, International Journal of Hydrogen Energy, 44(12), 5799-5811.
  • 8. Canel M. (1986). Kömürün Gazlaştırılması, Madencilik, 25: 2, 35-41.
  • 9. Carrasco-Jaima O.A., Hernandez J.M.M., Torres-Martínez L.M.T. & Moctezuma E. (2019). A comparative study on the photocatalytic hydrogen production of ATiO3 (A = Zn, Cd and Pb) perovskites and their photoelectrochemical properties, Journal of Photochemistry and Photobiology A: Chemistry, 371, 98-108.
  • 10. Chen J., Xa W., Zuo H., Wu X.E.J., Wang T., Zhang F. & Lu N. (2019). System development and environmental performance analysis of a solar-driven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach, Energy Conversion and Management, 184, 60-73.
  • 11. Çimen T. (2006). Sıvı Hidrojen Tanklarının Isıl Analizi ve Optimal Tasarımı. Yüksek Lisans Tezi, İstanbul, Türkiye.
  • 12. Demirbaş A. (2009). Biohydrogen for Future Engine Fuel Demands, Springer-Verlag London Limited, London, New York.
  • 13. Demirtaş C. & Danışmaz M. (2016). Gazifikasyon Yöntemiyle Sentez Gazı Üretimi ve Gaz Yakma Sistemlerinde Kullanımı, International Journal of Nuclear and Radiation Science and Technology, 1(2), 14-19.
  • 14. Dinçer M.Z. & Aslan Ö. (2008). Sürdürülebilir Kalkınma, Yenilenebilir Enerji Kaynakları Ve Hidrojen Enerjisi: Türkiye Değerlendirmesi, e-Journal of New World Sciences Academy, 3(2), 152-160.
  • 15. Duman G. & Yanik J. (2017). Two-step steam pyrolysis of biomass for hydrogen production, International Journal of Hydrogen Energy, 42(27), 17000-17008.
  • 16. Ersöz A., Olgun H., Özdoğan S., Güngör C., Akgün F. & Tırıs M. (2003). Autothermal Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell, Journal of Power Sources, 384-392.
  • 17. Fu M., Ma T., Wang L., Dai S., Chang Z., Xu H., Li J. & Li X. (2019). Hydrogen production via a novel two-step solar thermochemical cycle based on non-volatile GeO2, Solar Energy, 179, 30-36.
  • 18. Gnanapragasam N.V., Reddy B.V. & Rosen M.A. (2010). Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels, International Journal of Hydrogen Energy, 35(10), 4788-4807.
  • 19. Gnanapragasam N.V., Reddy B.V. & Rosen M.A. (2010). Hydrogen production from coal gasification for effective downstream CO2 capture, International Journal of Hydrogen Energy, 35(10), 4933-4943.
  • 20. Gong Y., Lu J.,Jiang W., Liu S., Wang W. & Li A (2018). Gasification of landfill leachate in supercritical water: Effects on hydrogen yield and tar formation, International Journal of Hydrogen Energy, 43(51), 22827-22837.
  • 21. Hilooğlu M. & Sözen E. (2018). Riskleri ve Ekonomik Kullanımları Açısından Türkiye’ye Geçiş Yapan İstilacı Sulak Alan Bitkisi Eıchhornıa Crassıpes (Mart.) Solms, Bartın University International Journal of Natural and Applied Sciences, 1(2), 128-137.
  • 22. Joshi A.S., Dincer I. & Reddy B.V. (2010). Exergetic assessment of solar hydrogen production methods, International Journal of Hydrogen Energy, 35, 4901–4908.
  • 23. Kıncay O., Ağustos H. & Akbulut U (2008). Doğalgazdan Hidrojen Üretiminde Isıl Yöntemler, J. Eng. Nat. Sci., 26(1), 1–17.
  • 24. Kudo A. & Miseki Y. (2009). Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38, 253-278.
  • 25. Kurtuluş G., Tabakoğlu F.Ö. &Türe İ.E. (2004). Türkiye’de Hidrojen Enerjisi Çalışmaları ve UNIDO-ICHET”, Dünya Enerj. Konseyi Türk Milli Komitesi Türkiye 10. Enerj. Kongresi, 459–466.
  • 26. Lee D.H. (2015). 12 - Hydrogen production via the Kværner process and plasma reforming, Compendium of Hydrogen Energy, 349-391.
  • 27. Lee G.J., Chen H.C. & Wu J.J. (2019). (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy, 44(1), 110-117.
  • 28. Lunprom S., Phanduang O., Salakkam A., Liao Q. & Reungsang A. (2019). A sequential process of anaerobic solid-state fermentation followed by dark fermentation for bio-hydrogen production from Chlorella sp., International Journal of Hydrogen Energy, 44(6), 3306-3316.
  • 29. Manickam K., Mistry P., Walker G., Grant D., Buckley C., Humphries T.D., Paskevicius M., Albert R., Peinecke K. & Felderhoff M. (2019). Future perspectives of thermal energy storage with metal hydrides, International Journal of Hydrogen Energy, 44(15), 7738-7745.
  • 30. Menad C.A., Gomri R. & Bouchahdane M. (2018). Data on safe hydrogen production from the solarphotovoltaic solar panel through alkalineelectrolyser under Algerian climate, Data in Brief, 21, 1051-1060.
  • 31. Ni M., Leung D.Y.C., Leung M.K.H. & Sumathy K. (2006). An Overview of Hydrogen Production from Biomass, Fuel Processing Technology, 87, 461-472.
  • 32. Önal E. & Yarbay R.Z. (2010). Türkiye’de Yenilenebilir Enerji Kaynakları Potansiyeli ve Geleceği, İstanbul Ticaret Üniversitesi Fen Bilim. Derg., 18, 77–96.
  • 33. Öztürk M., Elbir A., Özek N. & Yakut A.K. (2011). Güneş Hidrojen Üretim Metotlarının İncelenmesi,6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey, s. 231-237.
  • 34. Panigrahia P., Naqvic S.R., Hankel M., Ahuja R. & Hussain T. (2018). Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules, Applied Surface Science, 444, 467-473.
  • 35. Poudyal RS, Tiwari I, Koirala AR, Masukawa H, Inoue K, Tomo T, Najafpour MM, Allakhverdiev SI, Veziroğlu TN (2015). 10 - Hydrogen production using photobiological methods, Compendium of Hydrogen Energy, 289-317.
  • 36. Roseno C., Schmal M., Brackmann R., Alves R.M.B. & Giudici R. (2019). Partial oxidation of methane on neodymium and lanthanium chromate based perovskites for hydrogen production, International Journal of Hydrogen Energy, 44(16), 8166-8177.
  • 37. Sadati S.M.T., Vousoughi P. & Eyvazi M. (2015). Hydrogen Production : Overview of Technology Options and Membrane in Auto-Thermal Reforming Including Partial Oxidation and Steam Reforming, International Journal of Membrane Science and Technology, 2(1), 56–67.
  • 38. Salama M.A., Ahmeda K., Aktera N., Hossaina T., Abdullah B. (2018). A review of hydrogen production via biomass gasification and its prospect in Bangladesh, International Journal of Hydrogen Energy, 43(32), 14944-14973.
  • 39. Seçer A., Küçet N., Fakı E. & Hasanoğlu A. (2018). Comparison of co–gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production, International Journal of Hydrogen Energy, 43(46), 21269-21278.
  • 40. Sengmee D., Cheirsilp B., Suksaroge T.T. & Prasertsan P. (2017). Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source, International Journal of Hydrogen Energy, 42(4), 1970-1976.
  • 41. Shi L., Qi S., Qu J., Che T., Yi C. & Yang B. (2019). Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier, International Journal of Hydrogen Energy, 44(11), 5345-5354.
  • 42. Spath P.L. & Mann M.K. (2001). Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, NREL, Golden, Colorado.
  • 43. Şentürk G.İ. & Büyükgüngör H. (2010). Biyohidrojen üretim yöntemleri ve kullanılan farklı atık materyallerin incelenmesi, J. Eng. Nat. Sci., 28(362),369–395.
  • 44. Tarkowski R. (2019). Underground hydrogen storage: Characteristics and prospects, Renewable and Sustainable Energy Reviews, 105, 86-94.
  • 45. Touili S., Merrouni A.B., Azouzoute A., Hassouani Y.E. & Amrani A. (2018). A technical and economical assessment of hydrogen production potential from solar energy in Morocco, International Journal of Hydrogen Energy, 43(51), 22777-22796.
  • 46. URL-1, (2019). https://www.hydrogen.energy.gov/pdfs/review04/hpd_p7_evans.pdf
  • 47. URL-2, (2019). https://www.bilgiustam.com/hidrojen-nasil-elde-edilir.
  • 48. Wendler K., Thar J., Zhan S. & Kirchner B. (2010). Estimating the hydrogen bond energy, J.Phys.Chem.A., 114(35), 9529-9536.
  • 49. Yasin M., Jeong Y., Park S., Jeong J., Lee E.Y., Lovitt R.W., Kim B.H., Lee J. & Chang I.S. (2015). Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations, Bioresour. Technol., 177, 361–374.
  • 50. Yu H., Cocks A.C.F. & Tarleton E. (2019). The influence of hydrogen on Lomer junctions, Scripta Materialia, 166, 173-177.
  • 51. Zhang Z., Zhou X., Hu J., Zhang T., Zhu S. & Zhang Q. (2017). Photo-bioreactor structure and light-heat-mass transfer properties in photo-fermentative bio-hydrogen production system: A mini review, International Journal of Hydrogen Energy, 17(27), 12143-12152.
  • 52. Zhao L., Li F., Li Z., Zhang L., He G., Zhao Q., Yuan J., Di J. & Zhou C. (2019). Thermodynamic analysis of the emptying process of compressed hydrogen tanks, International Journal of Hydrogen Energy, 44(7), 3993-4005.

HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS

Year 2019, Volume: 2 Issue: 1, 16 - 34, 31.07.2019

Abstract

Son yıllarda
artan nüfus doğrultusunda kullanılan enerji miktarında da artış görülmüştür.
Ulaşım sektöründeki yakıt ihtiyacı ağırlıklı olarak fosil kaynaklı yakıtlardan
karşılanmaktadır. Dünya genelinde kullanılan fosil yakıtların rezerv ömürleri
her geçen yıl azalmaktadır. Fosil yakıtların kullanımından kaynaklanan
sıkıntılar düşünüldüğünde ulaşım sektöründeki yakıt ihtiyacı yenilenebilir
enerji kaynakları ile karşılanarak sürekli hale gelmelidir. Devamlı artan CO2
salımı, çevre kirliliği ve yükselen fosil yakıt maliyetleri yakın gelecekte
alternatif enerji kaynaklarını aramayı kaçınılmaz hale getirmektedir. Bu amaçla
ulaşım sektöründe yenilenebilir enerji kaynaklarının kullanımı için hidrojen
gibi bir enerji taşıyıcısına ihtiyaç duyulmaktadır. Hidrojen doğada en çok
bulunan element olduğu için uygulama alanı geniştir. Hidrojen elementi doğada
serbest halde diatomik yapıda bulunur. Hidrojen, kokusuz, tatsız, renksiz ve en
hafif yanıcı gazdır. Temiz enerji taşıyıcısı olarak hidrojen kütle bazında
yüksek enerji içeriğine sahiptir. Hidrojenin yanma ısısı yüksek olup zehirli
etkisi bulunmamaktadır. Kimyasal tepkimelerde yanma sonrası sadece su buharı
oluşur. Petrol türevlerine göre hidrojenin verimi 1.13 kat daha fazladır.
Hidrojen, motor veya gaz türbinlerinde elektrik üretiminde yakıt pili olarak
kullanılır. Fosil yakıt türevlerinin atmosfere ve yeryüzüne verdiği zararlar düşünüldüğünde
hidrojenin ne kadar önemli olduğu anlaşılacaktır. Enerji verimliliği, kaynak
çeşitliliği ve çevresel etkiler açısından hidrojenin, fosil yakıtlara kıyasla
üstünlüğü açıkça görülmektedir. Hidrojen, hidrokarbonlu bileşiklerin
gazlaştırılması, buhar reformasyonu, ayrışma gibi teknikler kullanılarak elde
edilebilir. Hidrojen elektroliz yöntemiyle de üretildiği için sonsuz bir enerji
kaynağıdır. Kimyasal ve fiziksel özellikleri çevreye olumsuz bir etki
oluşturmadığı için temiz yakıt sınıfındadır. Bu çalışmada hidrojenin
özellikleri anlatılmış olup hidrojenin enerji kaynakları ile ilişkisi, hidrojen
üretim yöntemleri açıklanmıştır. Ayıca hidrojen depolama çeşitleri ve
Türkiye’deki hidrojen uygulamaları hakkında bilgi verilmiştir.

References

  • 1. Acar C. & Dinçer İ. (2019). Review and evaluation of hydrogen production options for better environment, Journal of Cleaner Production, 218(1), 835-849.
  • 2. Amikam G., Nativ P. & Gendel Y. (2018). Chlorine-free alkaline seawater electrolysis for hydrogen production, International Journal of Hydrogen Energy, 43(13), 6504-6514.
  • 3. Anzelmo B., Wilcox J. & Liguori S. (2018). Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions, Journal of Membrane Science, 568(15), 113-120.
  • 4. Aslan, E. (2014). Nanoparçaçık Temelli Hidrojen Üretimi. Yüksek Lisans Tezi, Konya, Türkiye.
  • 5. Ball, M., Weeda, M. & Veziroğlu, N.T. (2016). Compendium of Hydrogen Energy: Hydrogen Use, Safety and the Hydrogen Economy (Woodhead Publishing Series in Energy), 1 St Edition Woodhead Press, Miami, FL, USA.
  • 6. Barışık, O. B. (2015). Lignoselülozik Atıklardan Biyolojik Hidrojen Gazı Üretimi. Yüksek Lisans Tezi, İzmir, Türkiye.
  • 7. Bolatkhan K., Kossalbayev B.D., Zayadan B.K., Tomo T., Veziroglu T.N. & Allakhverdiev S.I. (2019). Hydrogen production from phototrophic microorganisms: Reality and perspectives, International Journal of Hydrogen Energy, 44(12), 5799-5811.
  • 8. Canel M. (1986). Kömürün Gazlaştırılması, Madencilik, 25: 2, 35-41.
  • 9. Carrasco-Jaima O.A., Hernandez J.M.M., Torres-Martínez L.M.T. & Moctezuma E. (2019). A comparative study on the photocatalytic hydrogen production of ATiO3 (A = Zn, Cd and Pb) perovskites and their photoelectrochemical properties, Journal of Photochemistry and Photobiology A: Chemistry, 371, 98-108.
  • 10. Chen J., Xa W., Zuo H., Wu X.E.J., Wang T., Zhang F. & Lu N. (2019). System development and environmental performance analysis of a solar-driven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach, Energy Conversion and Management, 184, 60-73.
  • 11. Çimen T. (2006). Sıvı Hidrojen Tanklarının Isıl Analizi ve Optimal Tasarımı. Yüksek Lisans Tezi, İstanbul, Türkiye.
  • 12. Demirbaş A. (2009). Biohydrogen for Future Engine Fuel Demands, Springer-Verlag London Limited, London, New York.
  • 13. Demirtaş C. & Danışmaz M. (2016). Gazifikasyon Yöntemiyle Sentez Gazı Üretimi ve Gaz Yakma Sistemlerinde Kullanımı, International Journal of Nuclear and Radiation Science and Technology, 1(2), 14-19.
  • 14. Dinçer M.Z. & Aslan Ö. (2008). Sürdürülebilir Kalkınma, Yenilenebilir Enerji Kaynakları Ve Hidrojen Enerjisi: Türkiye Değerlendirmesi, e-Journal of New World Sciences Academy, 3(2), 152-160.
  • 15. Duman G. & Yanik J. (2017). Two-step steam pyrolysis of biomass for hydrogen production, International Journal of Hydrogen Energy, 42(27), 17000-17008.
  • 16. Ersöz A., Olgun H., Özdoğan S., Güngör C., Akgün F. & Tırıs M. (2003). Autothermal Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell, Journal of Power Sources, 384-392.
  • 17. Fu M., Ma T., Wang L., Dai S., Chang Z., Xu H., Li J. & Li X. (2019). Hydrogen production via a novel two-step solar thermochemical cycle based on non-volatile GeO2, Solar Energy, 179, 30-36.
  • 18. Gnanapragasam N.V., Reddy B.V. & Rosen M.A. (2010). Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels, International Journal of Hydrogen Energy, 35(10), 4788-4807.
  • 19. Gnanapragasam N.V., Reddy B.V. & Rosen M.A. (2010). Hydrogen production from coal gasification for effective downstream CO2 capture, International Journal of Hydrogen Energy, 35(10), 4933-4943.
  • 20. Gong Y., Lu J.,Jiang W., Liu S., Wang W. & Li A (2018). Gasification of landfill leachate in supercritical water: Effects on hydrogen yield and tar formation, International Journal of Hydrogen Energy, 43(51), 22827-22837.
  • 21. Hilooğlu M. & Sözen E. (2018). Riskleri ve Ekonomik Kullanımları Açısından Türkiye’ye Geçiş Yapan İstilacı Sulak Alan Bitkisi Eıchhornıa Crassıpes (Mart.) Solms, Bartın University International Journal of Natural and Applied Sciences, 1(2), 128-137.
  • 22. Joshi A.S., Dincer I. & Reddy B.V. (2010). Exergetic assessment of solar hydrogen production methods, International Journal of Hydrogen Energy, 35, 4901–4908.
  • 23. Kıncay O., Ağustos H. & Akbulut U (2008). Doğalgazdan Hidrojen Üretiminde Isıl Yöntemler, J. Eng. Nat. Sci., 26(1), 1–17.
  • 24. Kudo A. & Miseki Y. (2009). Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38, 253-278.
  • 25. Kurtuluş G., Tabakoğlu F.Ö. &Türe İ.E. (2004). Türkiye’de Hidrojen Enerjisi Çalışmaları ve UNIDO-ICHET”, Dünya Enerj. Konseyi Türk Milli Komitesi Türkiye 10. Enerj. Kongresi, 459–466.
  • 26. Lee D.H. (2015). 12 - Hydrogen production via the Kværner process and plasma reforming, Compendium of Hydrogen Energy, 349-391.
  • 27. Lee G.J., Chen H.C. & Wu J.J. (2019). (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy, 44(1), 110-117.
  • 28. Lunprom S., Phanduang O., Salakkam A., Liao Q. & Reungsang A. (2019). A sequential process of anaerobic solid-state fermentation followed by dark fermentation for bio-hydrogen production from Chlorella sp., International Journal of Hydrogen Energy, 44(6), 3306-3316.
  • 29. Manickam K., Mistry P., Walker G., Grant D., Buckley C., Humphries T.D., Paskevicius M., Albert R., Peinecke K. & Felderhoff M. (2019). Future perspectives of thermal energy storage with metal hydrides, International Journal of Hydrogen Energy, 44(15), 7738-7745.
  • 30. Menad C.A., Gomri R. & Bouchahdane M. (2018). Data on safe hydrogen production from the solarphotovoltaic solar panel through alkalineelectrolyser under Algerian climate, Data in Brief, 21, 1051-1060.
  • 31. Ni M., Leung D.Y.C., Leung M.K.H. & Sumathy K. (2006). An Overview of Hydrogen Production from Biomass, Fuel Processing Technology, 87, 461-472.
  • 32. Önal E. & Yarbay R.Z. (2010). Türkiye’de Yenilenebilir Enerji Kaynakları Potansiyeli ve Geleceği, İstanbul Ticaret Üniversitesi Fen Bilim. Derg., 18, 77–96.
  • 33. Öztürk M., Elbir A., Özek N. & Yakut A.K. (2011). Güneş Hidrojen Üretim Metotlarının İncelenmesi,6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey, s. 231-237.
  • 34. Panigrahia P., Naqvic S.R., Hankel M., Ahuja R. & Hussain T. (2018). Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules, Applied Surface Science, 444, 467-473.
  • 35. Poudyal RS, Tiwari I, Koirala AR, Masukawa H, Inoue K, Tomo T, Najafpour MM, Allakhverdiev SI, Veziroğlu TN (2015). 10 - Hydrogen production using photobiological methods, Compendium of Hydrogen Energy, 289-317.
  • 36. Roseno C., Schmal M., Brackmann R., Alves R.M.B. & Giudici R. (2019). Partial oxidation of methane on neodymium and lanthanium chromate based perovskites for hydrogen production, International Journal of Hydrogen Energy, 44(16), 8166-8177.
  • 37. Sadati S.M.T., Vousoughi P. & Eyvazi M. (2015). Hydrogen Production : Overview of Technology Options and Membrane in Auto-Thermal Reforming Including Partial Oxidation and Steam Reforming, International Journal of Membrane Science and Technology, 2(1), 56–67.
  • 38. Salama M.A., Ahmeda K., Aktera N., Hossaina T., Abdullah B. (2018). A review of hydrogen production via biomass gasification and its prospect in Bangladesh, International Journal of Hydrogen Energy, 43(32), 14944-14973.
  • 39. Seçer A., Küçet N., Fakı E. & Hasanoğlu A. (2018). Comparison of co–gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production, International Journal of Hydrogen Energy, 43(46), 21269-21278.
  • 40. Sengmee D., Cheirsilp B., Suksaroge T.T. & Prasertsan P. (2017). Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source, International Journal of Hydrogen Energy, 42(4), 1970-1976.
  • 41. Shi L., Qi S., Qu J., Che T., Yi C. & Yang B. (2019). Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier, International Journal of Hydrogen Energy, 44(11), 5345-5354.
  • 42. Spath P.L. & Mann M.K. (2001). Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, NREL, Golden, Colorado.
  • 43. Şentürk G.İ. & Büyükgüngör H. (2010). Biyohidrojen üretim yöntemleri ve kullanılan farklı atık materyallerin incelenmesi, J. Eng. Nat. Sci., 28(362),369–395.
  • 44. Tarkowski R. (2019). Underground hydrogen storage: Characteristics and prospects, Renewable and Sustainable Energy Reviews, 105, 86-94.
  • 45. Touili S., Merrouni A.B., Azouzoute A., Hassouani Y.E. & Amrani A. (2018). A technical and economical assessment of hydrogen production potential from solar energy in Morocco, International Journal of Hydrogen Energy, 43(51), 22777-22796.
  • 46. URL-1, (2019). https://www.hydrogen.energy.gov/pdfs/review04/hpd_p7_evans.pdf
  • 47. URL-2, (2019). https://www.bilgiustam.com/hidrojen-nasil-elde-edilir.
  • 48. Wendler K., Thar J., Zhan S. & Kirchner B. (2010). Estimating the hydrogen bond energy, J.Phys.Chem.A., 114(35), 9529-9536.
  • 49. Yasin M., Jeong Y., Park S., Jeong J., Lee E.Y., Lovitt R.W., Kim B.H., Lee J. & Chang I.S. (2015). Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations, Bioresour. Technol., 177, 361–374.
  • 50. Yu H., Cocks A.C.F. & Tarleton E. (2019). The influence of hydrogen on Lomer junctions, Scripta Materialia, 166, 173-177.
  • 51. Zhang Z., Zhou X., Hu J., Zhang T., Zhu S. & Zhang Q. (2017). Photo-bioreactor structure and light-heat-mass transfer properties in photo-fermentative bio-hydrogen production system: A mini review, International Journal of Hydrogen Energy, 17(27), 12143-12152.
  • 52. Zhao L., Li F., Li Z., Zhang L., He G., Zhao Q., Yuan J., Di J. & Zhou C. (2019). Thermodynamic analysis of the emptying process of compressed hydrogen tanks, International Journal of Hydrogen Energy, 44(7), 3993-4005.
There are 52 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Halil Mutlubaş 0000-0002-8079-5290

Zafer Ömer Özdemir 0000-0002-8362-3136

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Mutlubaş, H., & Özdemir, Z. Ö. (2019). HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS. Bartın University International Journal of Natural and Applied Sciences, 2(1), 16-34.
AMA Mutlubaş H, Özdemir ZÖ. HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS. JONAS. July 2019;2(1):16-34.
Chicago Mutlubaş, Halil, and Zafer Ömer Özdemir. “HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS”. Bartın University International Journal of Natural and Applied Sciences 2, no. 1 (July 2019): 16-34.
EndNote Mutlubaş H, Özdemir ZÖ (July 1, 2019) HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS. Bartın University International Journal of Natural and Applied Sciences 2 1 16–34.
IEEE H. Mutlubaş and Z. Ö. Özdemir, “HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS”, JONAS, vol. 2, no. 1, pp. 16–34, 2019.
ISNAD Mutlubaş, Halil - Özdemir, Zafer Ömer. “HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS”. Bartın University International Journal of Natural and Applied Sciences 2/1 (July 2019), 16-34.
JAMA Mutlubaş H, Özdemir ZÖ. HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS. JONAS. 2019;2:16–34.
MLA Mutlubaş, Halil and Zafer Ömer Özdemir. “HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS”. Bartın University International Journal of Natural and Applied Sciences, vol. 2, no. 1, 2019, pp. 16-34.
Vancouver Mutlubaş H, Özdemir ZÖ. HYDROGEN AS AN ENERGY CARRIER AND HYDROGEN PRODUCTION METHODS. JONAS. 2019;2(1):16-34.