Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 35 - 43, 31.07.2019

Abstract

References

  • 1. Akula R. & Ravishankar G. A. (2016). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6:1720–1731.
  • 2. Amarowicz R., Weidner S., Wójtowicz I., Karamać M., Kosińska A. & Rybarczyk A. (2010). Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biot 4:90–96.
  • 3. André C. M., Schafleitner R., Legay S., Lefèvre I., Aliaga C. A., Nomberto G., Hoffmann L., Hausman J. F., Larondelle Y. & Evers D. (2009). Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 70:1107–1116.
  • 4. Atkinson N. J., Dew T. P., Orfila C., Urwin P. E. (2011). Influence of Combined Biotic and Abiotic Stress on Nutritional Quality Parameters in Tomato ( Solanum lycopersicum ). J Agric Food Chem, 59:9673–9682 .
  • 5. Bajoub A., Hurtado-Fernández E., Ajal E. A., Ouazzani N., Fernández-Gutiérrez A. & Carrasco-Pancorbo A. (2015). Comprehensive 3-year study of the phenolic profile of Moroccan monovarietal virgin olive oils from the meknes region. J Agric Food Chem, 63:4376–4385.
  • 6. Bajpai M., Pande A., Tewari S. K. & Prakash D. (2005). Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr, 56:287–291.
  • 7. Batish D. R., Singh H. P., Kaur S., Kohli R. K. & Yadav S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J Plant Physiol, 165:297–305.
  • 8. Bautista I., Boscaiu M., Lidón A., Llinares J. V., Lull C., Donat M. P., Mayoral O. & Vicente O. (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol Plant, 38:1–15.
  • 9. Bhattacharya A., Sood P. & Citovsky V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 11:705–719.
  • 10. Calixto-Campos C., Carvalho T. T., Hohmann M. S. N., Pinho-Ribeiro F. A., Fattori V., Manchope M. F., Zarpelon A. C., Baracat M. M., Georgetti S. R., Casagrande R. & Verri W. A. (2015). Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFkB Activation in Mice. J Nat Prod, 78:1799–1808.
  • 11. Cheynier V. (2012). Phenolic compounds: From plants to foods. Phytochem Rev, 11:153–177.
  • 12. Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P. & Vidal N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem, 97:654–660.
  • 13. Dudonne S., Vitrac X., Coutiere P., Woillez M. & Merillon J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem, 57:1768–1774.
  • 14. Elguera J. C. T., Barrientos E. Y., Wrobel K. & Wrobel K. (2013). Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant, 35:431–441.
  • 15. Farah A., Monteiro M. & Donangelo C.M.S (2008). 5-O-caffeoylquinic acid (5-CQA) from Green Coffee Extract are Highly Bioavailable in Humans. J Nutr, 138:2309–2315.
  • 16. Farooq M. A., Ali S., Hameed A., Ishaque W., Mahmood K. & Iqbal Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf, 96:242–249.
  • 17. Gill S. S. & Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48:909–930.
  • 18. Gitzinger M., Kemmer C., Fluri D.A., Daoud El-Baba M., Weber W. & Fussenegger M. (2012). The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res, 40:2–15.
  • 19. Grace M. H., Esposito D., Dunlap K. L. & Lila M. A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild alaskan and commercial vaccinium berries. J Agric Food Chem, 62:4007–4017.
  • 20. Gratão P. L., Polle A., Lea P. J. & Azevedo R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol, 32:481–494.
  • 21. Gülçin I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217:213–220.
  • 22. Kisa D., Elmastaş M., Öztürk L. & Kayır Ö. (2016). Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem, 59:813–820.
  • 23. Kováčik J., Grúz J., Bačkor M., Tomko J., Strnad M. & Repčák M. (2008). Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot, 62:145–152.
  • 24. Kováčik J., Klejdus B. & Bačkor M. (2009a). Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166:1460–1464.
  • 25. Kováčik J., Klejdus B., Hedbavny J. & Bačkor M. (2009b). Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology, 18:544–554.
  • 26. Kováčik J., Klejdus B., Hedbavny J., Štork F. & Bačkor M. (2009c). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil, 320:231–242.
  • 27. Król A., Amarowicz R. & Weidner S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol Plant, 36:1491–1499.
  • 28. Król A., Amarowicz R. & Weidner S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. J Plant Physiol, 189:97–104.
  • 29. Lim J. H., Park K. J., Kim B. K., Jeong J. W. & Kim H. J. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem, 135:1065–1070.
  • 30. Manguro L. O. A. & Lemmen P. (2007). Phenolics of Moringa oleifera leaves. Nat Prod Res, 21:56–68.
  • 31. Manquian-Cerda K., Escudey M., Zuniga G., Arancibia-Miranda N., Molina M. & Cruces E. (2016). Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol Environ Saf, 133:316–326.
  • 32. Márquez-García B., Fernández-Recamales M. A. & Ordoba F. (2012). Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J Bot, 936950:1–6.
  • 33. Mustafa N. R. & Verpoorte R. (2007). Phenolic compounds in Catharanthus roseus. Phytochem Rev. 6:243–258.
  • 34. Ncube E. N., Mhlongo M. I., Piater L. A., Steenkamp P. A., Dubery I. A. & Madala N. E. (2014). Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent, 8:1–10.
  • 35. Petridis A., Therios I., Samouris G., Koundouras S. & Giannakoula A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem, 60:1–11.
  • 36. Rascio N. & Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci, 180:169–181.
  • 37. Sannchez-Rodriguez E., Moreno D. A., Ferreres F., Rubio-Wilhelmi M. D. M. & Ruiz J. M. (2011). Differential responses of five cherry tomato varieties to water stress: Changes on phenolic metabolites and related enzymes. Phytochemistry, 72:723–729.
  • 38. Sartor T, Xavier V. B., Falcao M. A., Mondin C.A., Dos Santos M. A., Cassel E., Astarita L. V. & Santarem E. R (2013). Seasonal changes in phenolic compounds and in the biological activities of Baccharis dentata (Vell.) G.M. Barroso. Ind Crops Prod, 51:355–359.
  • 39. Singleton L. & Rosi J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Oenol Vitic, 16:144–158.
  • 40. Srivastava A., Gupta A. K., Datsenka T., Mattoo A. K. & Handa A. K. (2010). Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome. GM Crops, 1:237–249.
  • 41. Sytar O., Borankulova A., Hemmerich I., Rauh C. & Smetanska I. (2014). Effect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants. Biol Res, 47:1–19.
  • 42. Waśkiewicz A., Muzolf-Panek M. & Goliński P. (2013). Phenolic Content Changes in Plants Under Salt Stress. In: Parvaiz A., Azooz M.M., Prasad M.N.V. (ed) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, pp 283–314.
  • 43. Weidner S., Kordala E., Brosowska-Arendt W., Karamac M., Kosinska A. & Amarowicz R. (2009). Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under low-temperature stress followed by recovery. Acta Soc Bot Pol, 78:279–286.
  • 44. Widhalm J. R. & Dudareva N. (2015). A familiar ring to it: Biosynthesis of plant benzoic acids. Mol Plant, 8:83–97.
  • 45. Yuan G., Wang X., Guo R. & Wang Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem, 121:1014–1019.
  • 46. Zhang L., Ravipati A. S., Koyyalamudi S. R., Jeong, S. C., Reddy N., Smith P. T., Bartlett J., Shanmugam K., Munch G. & Wu M. J. (2011). Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. Chin Med, 7:12361–12367.
  • 47. Zhao S., Park C. H., Li X., Kim Y. B., Yang J., Sung G. B., Park N. Kim S. & Park S. U. (2015). Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.). J Agric Food Chem, 63:8622–8630.

CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS

Year 2019, Volume: 2 Issue: 1, 35 - 43, 31.07.2019

Abstract

Heavy metals have restricted the plant regular
life cycles affecting the plant primer and seconder metabolites by biochemical
and physiological pathways. Phenolic compounds considered as products of
metabolic alterations have been synthesized in various numbers and typical
characteristic of plants. In this study, we aimed to investigate the variations
of phenolic compounds with HPLC in leaves of tomato exposed to heavy metals. The
applications of Cu, Cd and Pb significantly reduced the total phenolic content,
levels of caffeic, chlorogenic and vanillic acids in all treated groups except
for 50 and 20 ppm of Pb for total phenolics and vanillic acid, respectively. The
level of benzoic acid is generally decreased by the application of heavy metals
except for Cu at 50 ppm doses. Rutin is the most abundant phenolic compound in
term of quantity among to analyzed phenolics and its content decreased depending
on the heavy metal doses except for 10 ppm doses of Cd. The responses of tomato
under heavy metals stress resulted in lower amount of phenolic compounds. In
the present study, it was showed that total phenolic content has positive
correlations with caffeic acid in all treatment of heavy metals.

References

  • 1. Akula R. & Ravishankar G. A. (2016). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6:1720–1731.
  • 2. Amarowicz R., Weidner S., Wójtowicz I., Karamać M., Kosińska A. & Rybarczyk A. (2010). Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biot 4:90–96.
  • 3. André C. M., Schafleitner R., Legay S., Lefèvre I., Aliaga C. A., Nomberto G., Hoffmann L., Hausman J. F., Larondelle Y. & Evers D. (2009). Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 70:1107–1116.
  • 4. Atkinson N. J., Dew T. P., Orfila C., Urwin P. E. (2011). Influence of Combined Biotic and Abiotic Stress on Nutritional Quality Parameters in Tomato ( Solanum lycopersicum ). J Agric Food Chem, 59:9673–9682 .
  • 5. Bajoub A., Hurtado-Fernández E., Ajal E. A., Ouazzani N., Fernández-Gutiérrez A. & Carrasco-Pancorbo A. (2015). Comprehensive 3-year study of the phenolic profile of Moroccan monovarietal virgin olive oils from the meknes region. J Agric Food Chem, 63:4376–4385.
  • 6. Bajpai M., Pande A., Tewari S. K. & Prakash D. (2005). Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr, 56:287–291.
  • 7. Batish D. R., Singh H. P., Kaur S., Kohli R. K. & Yadav S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J Plant Physiol, 165:297–305.
  • 8. Bautista I., Boscaiu M., Lidón A., Llinares J. V., Lull C., Donat M. P., Mayoral O. & Vicente O. (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol Plant, 38:1–15.
  • 9. Bhattacharya A., Sood P. & Citovsky V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 11:705–719.
  • 10. Calixto-Campos C., Carvalho T. T., Hohmann M. S. N., Pinho-Ribeiro F. A., Fattori V., Manchope M. F., Zarpelon A. C., Baracat M. M., Georgetti S. R., Casagrande R. & Verri W. A. (2015). Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFkB Activation in Mice. J Nat Prod, 78:1799–1808.
  • 11. Cheynier V. (2012). Phenolic compounds: From plants to foods. Phytochem Rev, 11:153–177.
  • 12. Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P. & Vidal N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem, 97:654–660.
  • 13. Dudonne S., Vitrac X., Coutiere P., Woillez M. & Merillon J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem, 57:1768–1774.
  • 14. Elguera J. C. T., Barrientos E. Y., Wrobel K. & Wrobel K. (2013). Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant, 35:431–441.
  • 15. Farah A., Monteiro M. & Donangelo C.M.S (2008). 5-O-caffeoylquinic acid (5-CQA) from Green Coffee Extract are Highly Bioavailable in Humans. J Nutr, 138:2309–2315.
  • 16. Farooq M. A., Ali S., Hameed A., Ishaque W., Mahmood K. & Iqbal Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf, 96:242–249.
  • 17. Gill S. S. & Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48:909–930.
  • 18. Gitzinger M., Kemmer C., Fluri D.A., Daoud El-Baba M., Weber W. & Fussenegger M. (2012). The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res, 40:2–15.
  • 19. Grace M. H., Esposito D., Dunlap K. L. & Lila M. A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild alaskan and commercial vaccinium berries. J Agric Food Chem, 62:4007–4017.
  • 20. Gratão P. L., Polle A., Lea P. J. & Azevedo R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol, 32:481–494.
  • 21. Gülçin I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217:213–220.
  • 22. Kisa D., Elmastaş M., Öztürk L. & Kayır Ö. (2016). Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem, 59:813–820.
  • 23. Kováčik J., Grúz J., Bačkor M., Tomko J., Strnad M. & Repčák M. (2008). Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot, 62:145–152.
  • 24. Kováčik J., Klejdus B. & Bačkor M. (2009a). Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166:1460–1464.
  • 25. Kováčik J., Klejdus B., Hedbavny J. & Bačkor M. (2009b). Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology, 18:544–554.
  • 26. Kováčik J., Klejdus B., Hedbavny J., Štork F. & Bačkor M. (2009c). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil, 320:231–242.
  • 27. Król A., Amarowicz R. & Weidner S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol Plant, 36:1491–1499.
  • 28. Król A., Amarowicz R. & Weidner S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. J Plant Physiol, 189:97–104.
  • 29. Lim J. H., Park K. J., Kim B. K., Jeong J. W. & Kim H. J. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem, 135:1065–1070.
  • 30. Manguro L. O. A. & Lemmen P. (2007). Phenolics of Moringa oleifera leaves. Nat Prod Res, 21:56–68.
  • 31. Manquian-Cerda K., Escudey M., Zuniga G., Arancibia-Miranda N., Molina M. & Cruces E. (2016). Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol Environ Saf, 133:316–326.
  • 32. Márquez-García B., Fernández-Recamales M. A. & Ordoba F. (2012). Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J Bot, 936950:1–6.
  • 33. Mustafa N. R. & Verpoorte R. (2007). Phenolic compounds in Catharanthus roseus. Phytochem Rev. 6:243–258.
  • 34. Ncube E. N., Mhlongo M. I., Piater L. A., Steenkamp P. A., Dubery I. A. & Madala N. E. (2014). Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent, 8:1–10.
  • 35. Petridis A., Therios I., Samouris G., Koundouras S. & Giannakoula A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem, 60:1–11.
  • 36. Rascio N. & Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci, 180:169–181.
  • 37. Sannchez-Rodriguez E., Moreno D. A., Ferreres F., Rubio-Wilhelmi M. D. M. & Ruiz J. M. (2011). Differential responses of five cherry tomato varieties to water stress: Changes on phenolic metabolites and related enzymes. Phytochemistry, 72:723–729.
  • 38. Sartor T, Xavier V. B., Falcao M. A., Mondin C.A., Dos Santos M. A., Cassel E., Astarita L. V. & Santarem E. R (2013). Seasonal changes in phenolic compounds and in the biological activities of Baccharis dentata (Vell.) G.M. Barroso. Ind Crops Prod, 51:355–359.
  • 39. Singleton L. & Rosi J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Oenol Vitic, 16:144–158.
  • 40. Srivastava A., Gupta A. K., Datsenka T., Mattoo A. K. & Handa A. K. (2010). Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome. GM Crops, 1:237–249.
  • 41. Sytar O., Borankulova A., Hemmerich I., Rauh C. & Smetanska I. (2014). Effect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants. Biol Res, 47:1–19.
  • 42. Waśkiewicz A., Muzolf-Panek M. & Goliński P. (2013). Phenolic Content Changes in Plants Under Salt Stress. In: Parvaiz A., Azooz M.M., Prasad M.N.V. (ed) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, pp 283–314.
  • 43. Weidner S., Kordala E., Brosowska-Arendt W., Karamac M., Kosinska A. & Amarowicz R. (2009). Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under low-temperature stress followed by recovery. Acta Soc Bot Pol, 78:279–286.
  • 44. Widhalm J. R. & Dudareva N. (2015). A familiar ring to it: Biosynthesis of plant benzoic acids. Mol Plant, 8:83–97.
  • 45. Yuan G., Wang X., Guo R. & Wang Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem, 121:1014–1019.
  • 46. Zhang L., Ravipati A. S., Koyyalamudi S. R., Jeong, S. C., Reddy N., Smith P. T., Bartlett J., Shanmugam K., Munch G. & Wu M. J. (2011). Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. Chin Med, 7:12361–12367.
  • 47. Zhao S., Park C. H., Li X., Kim Y. B., Yang J., Sung G. B., Park N. Kim S. & Park S. U. (2015). Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.). J Agric Food Chem, 63:8622–8630.
There are 47 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Dursun Kısa 0000-0002-7681-2385

Ömer Kayır This is me

Necdettin Sağlam

Sezer Şahin

Lokman Öztürk

Mahfuz Elmastaş

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Kısa, D., Kayır, Ö., Sağlam, N., Şahin, S., et al. (2019). CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS. Bartın University International Journal of Natural and Applied Sciences, 2(1), 35-43.
AMA Kısa D, Kayır Ö, Sağlam N, Şahin S, Öztürk L, Elmastaş M. CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS. JONAS. July 2019;2(1):35-43.
Chicago Kısa, Dursun, Ömer Kayır, Necdettin Sağlam, Sezer Şahin, Lokman Öztürk, and Mahfuz Elmastaş. “CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS”. Bartın University International Journal of Natural and Applied Sciences 2, no. 1 (July 2019): 35-43.
EndNote Kısa D, Kayır Ö, Sağlam N, Şahin S, Öztürk L, Elmastaş M (July 1, 2019) CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS. Bartın University International Journal of Natural and Applied Sciences 2 1 35–43.
IEEE D. Kısa, Ö. Kayır, N. Sağlam, S. Şahin, L. Öztürk, and M. Elmastaş, “CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS”, JONAS, vol. 2, no. 1, pp. 35–43, 2019.
ISNAD Kısa, Dursun et al. “CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS”. Bartın University International Journal of Natural and Applied Sciences 2/1 (July 2019), 35-43.
JAMA Kısa D, Kayır Ö, Sağlam N, Şahin S, Öztürk L, Elmastaş M. CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS. JONAS. 2019;2:35–43.
MLA Kısa, Dursun et al. “CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS”. Bartın University International Journal of Natural and Applied Sciences, vol. 2, no. 1, 2019, pp. 35-43.
Vancouver Kısa D, Kayır Ö, Sağlam N, Şahin S, Öztürk L, Elmastaş M. CHANGES OF PHENOLIC COMPOUNDS IN TOMATO ASSOCIATED WITH THE HEAVY METAL STRESS. JONAS. 2019;2(1):35-43.