Year 2020, Volume 3 , Issue 2, Pages 108 - 115 2020-12-31

COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION

Tuba ÜNÜGÜL [1] , Filiz UĞUR NİGİZ [2]


Hydrogen is an important fuel production chemical that is used both for generating electrical energy in fuel cells and in which many chemicals can be produced. Hydrogen can be produced either by chemical methods from petrochemical products or from biomass by fermentation. However, in order to use hydrogen as a fuel source, it must be separated from other waste gases. Although there are many methods used for separation, the most efficient, clean and inexpensive method is membrane gas separation. The effectiveness of this process depends on the membrane produced. In this study, hydroxy ethyl cellulose (HEC) and polystyrene sulfonic acid (PSSA) membranes was synthesized for selective separation of hydrogen from carbon dioxide. In order to increase the hydrogen selectivity, natural zeolite was incorporated into polymer matrix. The effects of HEC/PSSA ratio, and zeolite content on gas permeability and hydrogen selectivity were investigated. As the PSSA ratio increased in HEC matrix, both the hydrogen permeability and selectivity increased. The content of zeolite also increased the hydrogen gas separation performance. The highest selectivity of 5.69 was achieved when the HEC/PSSA ratio was 1 and the zeolite content was 20% (w/w). The separation results showed that the PSSA and natural zeolite showed a positive effect on hydrogen purification and the membranes can be considered as a hydrogen purification material.
hydrogen purification, polystyrene sulfonic acid, hydroxyl ethyl cellulose, composite membrane
  • 1. Abedini, R. & Amir, N. (2010). Application of membrane in gas separation processes: Its suitability and mechanisms. Pet. Coal, 52, 69-80.
  • 2. Bakonyi, P., Nemestothy, K. & Belafi-Bako, K. (2013). Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy, 38(23), 9673-9687.
  • 3. Bernardo, P., Drioli, E. & Golemm, G. (2009). Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res, 48, 4638–466.
  • 4. Han, J., Lee, W., Choi, J.M., Patel, R. & Byoung-Ryul, M. (2010). Characterization of polyethersulfone polyimide blend membranes prepared by a drywet phase inversion Precipitation kinetics, morphology and gas separation. J. Membr. Sci, 351, 141-148.
  • 5. Kandeel, H.S., Badawya, N.A., Hamadaa, A.A., El-Sayed, M., Fathy, M., Al-Gamal, A.A.G. & Moghny T. A. (2018). Desalination aspects of PSSA-g-PEG copolymer and its graphene composite membranes. Int. J. Chem. Sci., 16(3), 277.
  • 6. Kumar, R., Saraswat, V.K. & Kumar, M. (2017). Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int. J. Hydrog. Energy, 42(31),19977-19983.
  • 7. Nigiz, F.U. (2020). Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved seperation of CO2. Polm. Bull., 77, 2405-2422.
  • 8. Ockwig, N. W. & Nenoff, T. M. (2007). Membranes for hydrogen separation. Chem. Rev., 107, 4078−4110.
  • 9. Phair, J.W. & Badwal, S.P.S. (2006). Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater., 7, 792–805.
  • 10. Rahman, S.N.A., Masdar, M.S., Rosli, M.I., Majlan, E.H. & Husaini, T. (2015). Overview of biohydrogen production technologies and application in fuel cell. Am. J. Chem., 5, 13-23.
  • 11. Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R. & Freeman, B.D. (2013). Energy-efficient polymeric gasseparation membranes for a sustainable future: A review. Polymer, 54(18), 4729–4761.
  • 12. Ulbricht, M. (2006). Advanced functional polymer membranes. Polymer, 47, 2217–2262.
  • 13. Yang, T. & Chung, T.S. (2013). High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrog. Energy, 38, 229-239.
Primary Language en
Subjects Engineering, Chemical
Journal Section Articles
Authors

Orcid: 0000-0001-2345-6780
Author: Tuba ÜNÜGÜL
Institution: KOCAELİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0001-2345-6789
Author: Filiz UĞUR NİGİZ
Institution: Çanakkale Onsekiz Mart Üniversitesi
Country: Turkey


Supporting Institution Çanakkale Onsekiz Mart
Project Number FHD-2020-3294
Thanks Bu çalışma Çanakkale Onsekiz Mart Üniversitesi FHD-2020-3294 ID kodlu proje ile desteklenmiştir.
Dates

Publication Date : December 31, 2020

Bibtex @research article { jonas824831, journal = {Bartın University International Journal of Natural and Applied Sciences}, issn = {}, eissn = {2667-5048}, address = {Bartın Üniversitesi Fen Bilimleri Enstitüsü Ağdacı Kampüsü 74100-BARTIN}, publisher = {Bartin University}, year = {2020}, volume = {3}, pages = {108 - 115}, doi = {}, title = {COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION}, key = {cite}, author = {Ünügül, Tuba and Uğur Nigiz, Filiz} }
APA Ünügül, T , Uğur Nigiz, F . (2020). COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION . Bartın University International Journal of Natural and Applied Sciences , 3 (2) , 108-115 . Retrieved from https://dergipark.org.tr/en/pub/jonas/issue/57209/824831
MLA Ünügül, T , Uğur Nigiz, F . "COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION" . Bartın University International Journal of Natural and Applied Sciences 3 (2020 ): 108-115 <https://dergipark.org.tr/en/pub/jonas/issue/57209/824831>
Chicago Ünügül, T , Uğur Nigiz, F . "COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION". Bartın University International Journal of Natural and Applied Sciences 3 (2020 ): 108-115
RIS TY - JOUR T1 - COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION AU - Tuba Ünügül , Filiz Uğur Nigiz Y1 - 2020 PY - 2020 N1 - DO - T2 - Bartın University International Journal of Natural and Applied Sciences JF - Journal JO - JOR SP - 108 EP - 115 VL - 3 IS - 2 SN - -2667-5048 M3 - UR - Y2 - 2020 ER -
EndNote %0 Bartın Üniversitesi Uluslararası Fen Bilimleri Dergisi COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION %A Tuba Ünügül , Filiz Uğur Nigiz %T COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION %D 2020 %J Bartın University International Journal of Natural and Applied Sciences %P -2667-5048 %V 3 %N 2 %R %U
ISNAD Ünügül, Tuba , Uğur Nigiz, Filiz . "COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION". Bartın University International Journal of Natural and Applied Sciences 3 / 2 (December 2020): 108-115 .
AMA Ünügül T , Uğur Nigiz F . COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. JONAS. 2020; 3(2): 108-115.
Vancouver Ünügül T , Uğur Nigiz F . COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. Bartın University International Journal of Natural and Applied Sciences. 2020; 3(2): 108-115.
IEEE T. Ünügül and F. Uğur Nigiz , "COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION", Bartın University International Journal of Natural and Applied Sciences, vol. 3, no. 2, pp. 108-115, Dec. 2021