Research Article
BibTex RIS Cite

COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION

Year 2020, Volume: 3 Issue: 2, 108 - 115, 31.12.2020

Abstract

Hydrogen is an important fuel production chemical that is used both for generating electrical energy in fuel cells and in which many chemicals can be produced. Hydrogen can be produced either by chemical methods from petrochemical products or from biomass by fermentation. However, in order to use hydrogen as a fuel source, it must be separated from other waste gases. Although there are many methods used for separation, the most efficient, clean and inexpensive method is membrane gas separation. The effectiveness of this process depends on the membrane produced. In this study, hydroxy ethyl cellulose (HEC) and polystyrene sulfonic acid (PSSA) membranes was synthesized for selective separation of hydrogen from carbon dioxide. In order to increase the hydrogen selectivity, natural zeolite was incorporated into polymer matrix. The effects of HEC/PSSA ratio, and zeolite content on gas permeability and hydrogen selectivity were investigated. As the PSSA ratio increased in HEC matrix, both the hydrogen permeability and selectivity increased. The content of zeolite also increased the hydrogen gas separation performance. The highest selectivity of 5.69 was achieved when the HEC/PSSA ratio was 1 and the zeolite content was 20% (w/w). The separation results showed that the PSSA and natural zeolite showed a positive effect on hydrogen purification and the membranes can be considered as a hydrogen purification material.

Project Number

FHD-2020-3294

References

  • 1. Abedini, R. & Amir, N. (2010). Application of membrane in gas separation processes: Its suitability and mechanisms. Pet. Coal, 52, 69-80.
  • 2. Bakonyi, P., Nemestothy, K. & Belafi-Bako, K. (2013). Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy, 38(23), 9673-9687.
  • 3. Bernardo, P., Drioli, E. & Golemm, G. (2009). Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res, 48, 4638–466.
  • 4. Han, J., Lee, W., Choi, J.M., Patel, R. & Byoung-Ryul, M. (2010). Characterization of polyethersulfone polyimide blend membranes prepared by a drywet phase inversion Precipitation kinetics, morphology and gas separation. J. Membr. Sci, 351, 141-148.
  • 5. Kandeel, H.S., Badawya, N.A., Hamadaa, A.A., El-Sayed, M., Fathy, M., Al-Gamal, A.A.G. & Moghny T. A. (2018). Desalination aspects of PSSA-g-PEG copolymer and its graphene composite membranes. Int. J. Chem. Sci., 16(3), 277.
  • 6. Kumar, R., Saraswat, V.K. & Kumar, M. (2017). Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int. J. Hydrog. Energy, 42(31),19977-19983.
  • 7. Nigiz, F.U. (2020). Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved seperation of CO2. Polm. Bull., 77, 2405-2422.
  • 8. Ockwig, N. W. & Nenoff, T. M. (2007). Membranes for hydrogen separation. Chem. Rev., 107, 4078−4110.
  • 9. Phair, J.W. & Badwal, S.P.S. (2006). Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater., 7, 792–805.
  • 10. Rahman, S.N.A., Masdar, M.S., Rosli, M.I., Majlan, E.H. & Husaini, T. (2015). Overview of biohydrogen production technologies and application in fuel cell. Am. J. Chem., 5, 13-23.
  • 11. Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R. & Freeman, B.D. (2013). Energy-efficient polymeric gasseparation membranes for a sustainable future: A review. Polymer, 54(18), 4729–4761.
  • 12. Ulbricht, M. (2006). Advanced functional polymer membranes. Polymer, 47, 2217–2262.
  • 13. Yang, T. & Chung, T.S. (2013). High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrog. Energy, 38, 229-239.
Year 2020, Volume: 3 Issue: 2, 108 - 115, 31.12.2020

Abstract

Supporting Institution

Çanakkale Onsekiz Mart

Project Number

FHD-2020-3294

Thanks

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi FHD-2020-3294 ID kodlu proje ile desteklenmiştir.

References

  • 1. Abedini, R. & Amir, N. (2010). Application of membrane in gas separation processes: Its suitability and mechanisms. Pet. Coal, 52, 69-80.
  • 2. Bakonyi, P., Nemestothy, K. & Belafi-Bako, K. (2013). Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy, 38(23), 9673-9687.
  • 3. Bernardo, P., Drioli, E. & Golemm, G. (2009). Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res, 48, 4638–466.
  • 4. Han, J., Lee, W., Choi, J.M., Patel, R. & Byoung-Ryul, M. (2010). Characterization of polyethersulfone polyimide blend membranes prepared by a drywet phase inversion Precipitation kinetics, morphology and gas separation. J. Membr. Sci, 351, 141-148.
  • 5. Kandeel, H.S., Badawya, N.A., Hamadaa, A.A., El-Sayed, M., Fathy, M., Al-Gamal, A.A.G. & Moghny T. A. (2018). Desalination aspects of PSSA-g-PEG copolymer and its graphene composite membranes. Int. J. Chem. Sci., 16(3), 277.
  • 6. Kumar, R., Saraswat, V.K. & Kumar, M. (2017). Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int. J. Hydrog. Energy, 42(31),19977-19983.
  • 7. Nigiz, F.U. (2020). Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved seperation of CO2. Polm. Bull., 77, 2405-2422.
  • 8. Ockwig, N. W. & Nenoff, T. M. (2007). Membranes for hydrogen separation. Chem. Rev., 107, 4078−4110.
  • 9. Phair, J.W. & Badwal, S.P.S. (2006). Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater., 7, 792–805.
  • 10. Rahman, S.N.A., Masdar, M.S., Rosli, M.I., Majlan, E.H. & Husaini, T. (2015). Overview of biohydrogen production technologies and application in fuel cell. Am. J. Chem., 5, 13-23.
  • 11. Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R. & Freeman, B.D. (2013). Energy-efficient polymeric gasseparation membranes for a sustainable future: A review. Polymer, 54(18), 4729–4761.
  • 12. Ulbricht, M. (2006). Advanced functional polymer membranes. Polymer, 47, 2217–2262.
  • 13. Yang, T. & Chung, T.S. (2013). High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrog. Energy, 38, 229-239.
There are 13 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Tuba Ünügül

Filiz Uğur Nigiz This is me

Project Number FHD-2020-3294
Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Ünügül, T., & Uğur Nigiz, F. (2020). COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. Bartın University International Journal of Natural and Applied Sciences, 3(2), 108-115.
AMA Ünügül T, Uğur Nigiz F. COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. JONAS. December 2020;3(2):108-115.
Chicago Ünügül, Tuba, and Filiz Uğur Nigiz. “COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION”. Bartın University International Journal of Natural and Applied Sciences 3, no. 2 (December 2020): 108-15.
EndNote Ünügül T, Uğur Nigiz F (December 1, 2020) COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. Bartın University International Journal of Natural and Applied Sciences 3 2 108–115.
IEEE T. Ünügül and F. Uğur Nigiz, “COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION”, JONAS, vol. 3, no. 2, pp. 108–115, 2020.
ISNAD Ünügül, Tuba - Uğur Nigiz, Filiz. “COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION”. Bartın University International Journal of Natural and Applied Sciences 3/2 (December 2020), 108-115.
JAMA Ünügül T, Uğur Nigiz F. COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. JONAS. 2020;3:108–115.
MLA Ünügül, Tuba and Filiz Uğur Nigiz. “COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION”. Bartın University International Journal of Natural and Applied Sciences, vol. 3, no. 2, 2020, pp. 108-15.
Vancouver Ünügül T, Uğur Nigiz F. COMPOSITE HYDROXYL ETHYL CELLULOSE MEMBRANE FOR HYDROGEN PURIFICATION. JONAS. 2020;3(2):108-15.