Year 2021,
Volume: 4 Issue: 1, 20 - 32, 31.07.2021
Gamze Özçakır
,
Ali Karaduman
Project Number
17L0443014
References
- 1. Cao, Z., Niu, J., Gu, Y., Zhang, R., Liu, Y., & Luo, L. (2020). Catalytic pyrolysis of rice straw: screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization. Journal of Cleaner Production, 122079. https://doi.org/10.1016/j.jclepro.2020.122079
- 2. Çelikgöğüs, Ç., & Karaduman, A. (2015). Thermal-catalytic Pyrolysis of Polystyrene Waste Foams in a Semi-batch Reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(23), 2507–2513. https://doi.org/10.1080/15567036.2011.626492
- 3. Chagas, B. M., Dorado, C., Serapiglia, M. J., Mullen, C. A., Boateng, A. A., Melo, M. A., & Ataíde, C. H. (2016). Catalytic pyrolysis-GC/MS of Spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel, 179, 124-134. https://doi.org/10.1016/j.fuel.2016.03.076
- 4. Che, Q., Yang, M., Wang, X., Yang, Q., Williams, L. R., Yang, H., & Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource technology, 278, 248-254. https://doi.org/10.1016/j.biortech.2019.01.081
- 5. Choo, M.-Y., Oi, L. E., Ling, T. C., Ng, E.-P., Lee, H. V., & Juan, J. C. (2020). Conversion of Microalgae Biomass to Biofuels. In Microalgae Cultivation for Biofuels Production (pp. 149–161). Elsevier. https://doi.org/10.1016/b978-0-12-817536-1.00010-2
- 6. Du, Z., Ma, X., Li, Y., Chen, P., Liu, Y., Lin, X., Lei, H., & Ruan, R. (2013). Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: Catalyst screening in a pyroprobe. Bioresource Technology, 139, 397–401. https://doi.org/10.1016/j.biortech.2013.04.053
- 7. Elsayed, I., & Eseyin, A. (2016). Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene. Fuel, 174, 317-324. https://doi.org/10.1016/j.fuel.2016.02.031
- 8. Eschenbacher, A., Andersen, J. A., & Jensen, A. D. (2020). Catalytic conversion of acetol over HZSM-5 catalysts – influence of Si/Al ratio and introduction of mesoporosity. Catalysis Today. https://doi.org/10.1016/j.cattod.2020.03.041
- 9. Fan, X., & Jiao, Y. (2019). Porous materials for catalysis: Toward sustainable synthesis and applications of zeolites. In Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing (pp. 115–137). Elsevier. https://doi.org/10.1016/B978-0-12-814681-1.00005-9
- 10. Fanta, F. T., Dubale, A. A., Bebizuh, D. F., & Atlabachew, M. (2019). Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC Chemistry, 13(1), 1–12. https://doi.org/10.1186/s13065-019-0563-1
- 11. Gurdeep Singh, H. K., Yusup, S., Quitain, A. T., Abdullah, B., Ameen, M., Sasaki, M., Kida, T., & Cheah, K. W. (2020). Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environmental Research, 186, 109616. https://doi.org/10.1016/j.envres.2020.109616
- 12. Güleç, F., Özen, A., Niftaliyeva, A., Aydın, A., Şimşek, E. H., & Karaduman, A. (2018). A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts. Research on Chemical Intermediates, 44(1), 55-67. https://doi.org/10.1007/s11164-017-3090-5
- 13. Hita, I., Cordero-Lanzac, T., Bonura, G., Cannilla, C., Arandes, J. M., Frusteri, F., & Bilbao, J. (2019). Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 80, 392–400. https://doi.org/10.1016/j.jiec.2019.08.019
- 14. Ibarra, Á., Hita, I., Azkoiti, M. J., Arandes, J. M., & Bilbao, J. (2019). Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry, 78, 372–382. https://doi.org/10.1016/j.jiec.2019.05.032
- 15. Iisa, K., Kim, Y., Orton, K. A., Robichaud, D. J., Katahira, R., Watson, M. J., Wegener, E. C., Nimlos, M. R., Schaidle, J. A., Mukarakate, C., & Kim, S. (2020). Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. Green Chemistry, 22(8), 2403–2418. https://doi.org/10.1039/c9gc03408k
- 16. Iliopoulou, E. F., Stefanidis, S. D., Kalogiannis, K. G., Delimitis, A., Lappas, A. A., & Triantafyllidis, K. S. (2012). Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Applied Catalysis B: Environmental, 127, 281-290. https://doi.org/10.1016/j.apcatb.2012.08.030
- 17. Jamilatun, S., Suhendra, Budhijanto, Rochmadi, Taufikurahman, Yuliestyan, A., & Budiman, A. (2020). Catalytic and non− catalytic pyrolysis of Spirulina platensis residue (SPR): Effects of temperature and catalyst content on bio-oil yields and its composition. AIP Conference Proceedings, 2248(1), 060003. https://doi.org/10.1063/5.0013164
- 18. Javaid, R., Urata, K., Furukawa, S., & Komatsu, T. (2015). Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Applied Catalysis A: General, 491, 100–105. https://doi.org/10.1016/j.apcata.2014.12.002
- 19. Kakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204–213. https://doi.org/10.1016/j.apcata.2019.02.026
- 20. Khivantsev, K., Jaegers, N. R., Kovarik, L., Prodinger, S., Derewinski, M. A., Wang, Y., Gao, F., & Szanyi, J. (2019). Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Applied Catalysis A: General, 569, 141–148. https://doi.org/10.1016/j.apcata.2018.10.021
- 21. Li, X., Dong, W., Zhang, J., Shao, S., & Cai, Y. (2020). Preparation of bio-oil derived from catalytic upgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites. Journal of the Energy Institute, 93(2), 605–613. https://doi.org/10.1016/j.joei.2019.06.005
- 22. Lin, X., Zhang, Z., & Wang, Q. (2019). Evaluation of zeolite catalysts on product distribution and synergy during wood-plastic composite catalytic pyrolysis. Energy, 189, 116174. https://doi.org/10.1016/j.energy.2019.116174
- 23. Liu, S. N., Cao, J. P., Zhao, X. Y., Wang, J. X., Ren, X. Y., Yuan, Z. S., Guo, Z. X., Shen, W. Z., Bai, J., & Wei, X. Y. (2019). Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. Journal of the Energy Institute, 92(5), 1567–1576. https://doi.org/10.1016/j.joei.2018.07.017
- 24. Mo, L., Dai, H., Feng, L., Liu, B., Li, X., Chen, Y., & Khan, S. (2020). In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment. Bioresource Technology, 314, 123758. https://doi.org/10.1016/j.biortech.2020.123758
- 25. Nagar, H., Badhrachalam, N., Rao, V. V. B., & Sridhar, S. (2019). A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation. Materials Chemistry and Physics, 224, 175–185. https://doi.org/10.1016/j.matchemphys.2018.12.023
- 26. Özçakir, G. (2020). Adsorption of Cu(II) from aqueous solution by using pyrolytic bio-char of Spirulina. Journal of the Institute of Science and Technology , 10 (1) , 73-83. https://doi.org/10.21597/jist.599528
- 27. Özçakır, G., & Karaduman, A. (2019). Obtaining Hydrocarbon Rich Bio-Oil Via Catalytic Co-Pyrolysis of Plastic Wastes And Spirulina Sp. Microalgae. International Journal of Research in Engineering and Science, 7(4), 12-22. http://www.ijres.org/papers/Volume%207/Issue-4/C0704011222.pdf
- 28. Özçakır, G., & Karaduman, A. (2020a). Chemical recovery from polystyrene waste and low density polyethylene via conventional pyrolysis. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 155-163. https://doi.org/10.31796/ogummf.734475
- 29. Özçakır, G., & Karaduman, A. (2020b). Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. International Journal of Energy Applications and Technologies, 7(4), 107-114. https://doi.org/10.31593/ijeat.772113
- 30. Palizdar, A., & Sadrameli, S. M. (2020). Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions. Renewable Energy, 148, 674–688. https://doi.org/10.1016/j.renene.2019.10.155
- 31. Peng, C., Liu, Z., Yonezawa, Y., Yanaba, Y., Katada, N., Murayama, I., Segoshi, S., Okubo, T., & Wakihara, T. (2019). Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 277, 197–202. https://doi.org/10.1016/j.micromeso.2018.10.036
- 32. Persson, H., Duman, I., Wang, S., Pettersson, L. J., & Yang, W. (2019). Catalytic pyrolysis over transition metal-modified zeolites: A comparative study between catalyst activity and deactivation. Journal of Analytical and Applied Pyrolysis, 138, 54–61. https://doi.org/10.1016/j.jaap.2018.12.005
- 33. Serrano, D. P., Melero, J. A., Morales, G., Iglesias, J., & Pizarro, P. (2018). Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 60(1), 1–70. https://doi.org/10.1080/01614940.2017.1389109
- 34. Shadangi, K. P., & Mohanty, K. (2015). Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel, 153, 492-498. https://doi.org/10.1016/j.fuel.2015.03.017
- 35. Srivastava, R., Choi, M., & Ryoo, R. (2006). Mesoporous materials with zeolite framework: Remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 43, 4489–4491. https://doi.org/10.1039/b612116k
- 36. Suárez, S., Jansson, I., Ohtani, B., & Sánchez, B. (2019). From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO 2 /zeolite hybrids for VOCs oxidation. Catalysis Today, 326, 2–7. https://doi.org/10.1016/j.cattod.2018.09.004
- 37. URL-1 (2015). https://solutions.shimadzu.co.jp/an/n/en/gcms/sio216012.pdf
- 38.Veses, A., Puértolas, B., López, J. M., Callén, M. S., Solsona, B., & García, T. (2016). Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. ACS Sustainable Chemistry & Engineering, 4(3), 1653-1660. https://doi.org/10.1021/acssuschemeng.5b01606
- 39. Yao, W., Li, J., Feng, Y., Wang, W., Zhang, X., Chen, Q., & Wang, Y. (2015). Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics. RSC Advances, 5(39), 30485-30494. https://doi.org/10.1039/C5RA02947C
- 40. Zheng, Y., Wang, F., Yang, X., Huang, Y., Liu, C., Zheng, Z., & Gu, J. (2017). Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis, 126, 169–179. https://doi.org/10.1016/j.jaap.2017.06.011
EFFECT OF METAL DOPED ZSM-5 CATALYST ON AROMATIC YIELD AND COKE FORMATION IN MICROALGAL BIO-OIL PRODUCTION
Year 2021,
Volume: 4 Issue: 1, 20 - 32, 31.07.2021
Gamze Özçakır
,
Ali Karaduman
Abstract
It has been known that synthetic zeolites as a cracking catalyst can increase aromatic hydrocarbon amount by providing deoxygenation of pyrolytic bio-oil. However, deactivation of zeolite because of coke deposition has been a serious problem. In this study, Ni and Co metals which was impregnated to ZSM-5 were used as catalyst for co-pyrolysis of Spirulina–Polystyrene and Spirulina-Polyethylene. The yields of bio-oils were compared to each other. The bio-oils which formed from catalytic co-pyrolysis were analyzed via GC-MS. Amounts of target aromatic compounds which were benzene, o-xylene, naphthalene in the bio-oils were determined. Coke amounts on the catalysts were computed. Regarding coke deposition (11%) and bio-oil yield (55%), it was determined that Ni-ZSM-5 was an effective catalyst for co-pyrolysis Polystyrene and Spirulina. For Spirulina and Polyethylene, it was obtained that bio-oil yield and coke deposition were 50% and 14% for Ni-ZSM-5.
Supporting Institution
Ankara University Coordinatorship of Scientific Research Projects
Project Number
17L0443014
Thanks
We would like to thank Ankara University Coordinatorship of Scientific Research Projects for financial support (Project Number: 17L0443014).
References
- 1. Cao, Z., Niu, J., Gu, Y., Zhang, R., Liu, Y., & Luo, L. (2020). Catalytic pyrolysis of rice straw: screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization. Journal of Cleaner Production, 122079. https://doi.org/10.1016/j.jclepro.2020.122079
- 2. Çelikgöğüs, Ç., & Karaduman, A. (2015). Thermal-catalytic Pyrolysis of Polystyrene Waste Foams in a Semi-batch Reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(23), 2507–2513. https://doi.org/10.1080/15567036.2011.626492
- 3. Chagas, B. M., Dorado, C., Serapiglia, M. J., Mullen, C. A., Boateng, A. A., Melo, M. A., & Ataíde, C. H. (2016). Catalytic pyrolysis-GC/MS of Spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel, 179, 124-134. https://doi.org/10.1016/j.fuel.2016.03.076
- 4. Che, Q., Yang, M., Wang, X., Yang, Q., Williams, L. R., Yang, H., & Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource technology, 278, 248-254. https://doi.org/10.1016/j.biortech.2019.01.081
- 5. Choo, M.-Y., Oi, L. E., Ling, T. C., Ng, E.-P., Lee, H. V., & Juan, J. C. (2020). Conversion of Microalgae Biomass to Biofuels. In Microalgae Cultivation for Biofuels Production (pp. 149–161). Elsevier. https://doi.org/10.1016/b978-0-12-817536-1.00010-2
- 6. Du, Z., Ma, X., Li, Y., Chen, P., Liu, Y., Lin, X., Lei, H., & Ruan, R. (2013). Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: Catalyst screening in a pyroprobe. Bioresource Technology, 139, 397–401. https://doi.org/10.1016/j.biortech.2013.04.053
- 7. Elsayed, I., & Eseyin, A. (2016). Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene. Fuel, 174, 317-324. https://doi.org/10.1016/j.fuel.2016.02.031
- 8. Eschenbacher, A., Andersen, J. A., & Jensen, A. D. (2020). Catalytic conversion of acetol over HZSM-5 catalysts – influence of Si/Al ratio and introduction of mesoporosity. Catalysis Today. https://doi.org/10.1016/j.cattod.2020.03.041
- 9. Fan, X., & Jiao, Y. (2019). Porous materials for catalysis: Toward sustainable synthesis and applications of zeolites. In Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing (pp. 115–137). Elsevier. https://doi.org/10.1016/B978-0-12-814681-1.00005-9
- 10. Fanta, F. T., Dubale, A. A., Bebizuh, D. F., & Atlabachew, M. (2019). Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC Chemistry, 13(1), 1–12. https://doi.org/10.1186/s13065-019-0563-1
- 11. Gurdeep Singh, H. K., Yusup, S., Quitain, A. T., Abdullah, B., Ameen, M., Sasaki, M., Kida, T., & Cheah, K. W. (2020). Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environmental Research, 186, 109616. https://doi.org/10.1016/j.envres.2020.109616
- 12. Güleç, F., Özen, A., Niftaliyeva, A., Aydın, A., Şimşek, E. H., & Karaduman, A. (2018). A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts. Research on Chemical Intermediates, 44(1), 55-67. https://doi.org/10.1007/s11164-017-3090-5
- 13. Hita, I., Cordero-Lanzac, T., Bonura, G., Cannilla, C., Arandes, J. M., Frusteri, F., & Bilbao, J. (2019). Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 80, 392–400. https://doi.org/10.1016/j.jiec.2019.08.019
- 14. Ibarra, Á., Hita, I., Azkoiti, M. J., Arandes, J. M., & Bilbao, J. (2019). Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry, 78, 372–382. https://doi.org/10.1016/j.jiec.2019.05.032
- 15. Iisa, K., Kim, Y., Orton, K. A., Robichaud, D. J., Katahira, R., Watson, M. J., Wegener, E. C., Nimlos, M. R., Schaidle, J. A., Mukarakate, C., & Kim, S. (2020). Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. Green Chemistry, 22(8), 2403–2418. https://doi.org/10.1039/c9gc03408k
- 16. Iliopoulou, E. F., Stefanidis, S. D., Kalogiannis, K. G., Delimitis, A., Lappas, A. A., & Triantafyllidis, K. S. (2012). Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Applied Catalysis B: Environmental, 127, 281-290. https://doi.org/10.1016/j.apcatb.2012.08.030
- 17. Jamilatun, S., Suhendra, Budhijanto, Rochmadi, Taufikurahman, Yuliestyan, A., & Budiman, A. (2020). Catalytic and non− catalytic pyrolysis of Spirulina platensis residue (SPR): Effects of temperature and catalyst content on bio-oil yields and its composition. AIP Conference Proceedings, 2248(1), 060003. https://doi.org/10.1063/5.0013164
- 18. Javaid, R., Urata, K., Furukawa, S., & Komatsu, T. (2015). Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Applied Catalysis A: General, 491, 100–105. https://doi.org/10.1016/j.apcata.2014.12.002
- 19. Kakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204–213. https://doi.org/10.1016/j.apcata.2019.02.026
- 20. Khivantsev, K., Jaegers, N. R., Kovarik, L., Prodinger, S., Derewinski, M. A., Wang, Y., Gao, F., & Szanyi, J. (2019). Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Applied Catalysis A: General, 569, 141–148. https://doi.org/10.1016/j.apcata.2018.10.021
- 21. Li, X., Dong, W., Zhang, J., Shao, S., & Cai, Y. (2020). Preparation of bio-oil derived from catalytic upgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites. Journal of the Energy Institute, 93(2), 605–613. https://doi.org/10.1016/j.joei.2019.06.005
- 22. Lin, X., Zhang, Z., & Wang, Q. (2019). Evaluation of zeolite catalysts on product distribution and synergy during wood-plastic composite catalytic pyrolysis. Energy, 189, 116174. https://doi.org/10.1016/j.energy.2019.116174
- 23. Liu, S. N., Cao, J. P., Zhao, X. Y., Wang, J. X., Ren, X. Y., Yuan, Z. S., Guo, Z. X., Shen, W. Z., Bai, J., & Wei, X. Y. (2019). Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. Journal of the Energy Institute, 92(5), 1567–1576. https://doi.org/10.1016/j.joei.2018.07.017
- 24. Mo, L., Dai, H., Feng, L., Liu, B., Li, X., Chen, Y., & Khan, S. (2020). In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment. Bioresource Technology, 314, 123758. https://doi.org/10.1016/j.biortech.2020.123758
- 25. Nagar, H., Badhrachalam, N., Rao, V. V. B., & Sridhar, S. (2019). A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation. Materials Chemistry and Physics, 224, 175–185. https://doi.org/10.1016/j.matchemphys.2018.12.023
- 26. Özçakir, G. (2020). Adsorption of Cu(II) from aqueous solution by using pyrolytic bio-char of Spirulina. Journal of the Institute of Science and Technology , 10 (1) , 73-83. https://doi.org/10.21597/jist.599528
- 27. Özçakır, G., & Karaduman, A. (2019). Obtaining Hydrocarbon Rich Bio-Oil Via Catalytic Co-Pyrolysis of Plastic Wastes And Spirulina Sp. Microalgae. International Journal of Research in Engineering and Science, 7(4), 12-22. http://www.ijres.org/papers/Volume%207/Issue-4/C0704011222.pdf
- 28. Özçakır, G., & Karaduman, A. (2020a). Chemical recovery from polystyrene waste and low density polyethylene via conventional pyrolysis. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 155-163. https://doi.org/10.31796/ogummf.734475
- 29. Özçakır, G., & Karaduman, A. (2020b). Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. International Journal of Energy Applications and Technologies, 7(4), 107-114. https://doi.org/10.31593/ijeat.772113
- 30. Palizdar, A., & Sadrameli, S. M. (2020). Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions. Renewable Energy, 148, 674–688. https://doi.org/10.1016/j.renene.2019.10.155
- 31. Peng, C., Liu, Z., Yonezawa, Y., Yanaba, Y., Katada, N., Murayama, I., Segoshi, S., Okubo, T., & Wakihara, T. (2019). Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 277, 197–202. https://doi.org/10.1016/j.micromeso.2018.10.036
- 32. Persson, H., Duman, I., Wang, S., Pettersson, L. J., & Yang, W. (2019). Catalytic pyrolysis over transition metal-modified zeolites: A comparative study between catalyst activity and deactivation. Journal of Analytical and Applied Pyrolysis, 138, 54–61. https://doi.org/10.1016/j.jaap.2018.12.005
- 33. Serrano, D. P., Melero, J. A., Morales, G., Iglesias, J., & Pizarro, P. (2018). Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 60(1), 1–70. https://doi.org/10.1080/01614940.2017.1389109
- 34. Shadangi, K. P., & Mohanty, K. (2015). Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel, 153, 492-498. https://doi.org/10.1016/j.fuel.2015.03.017
- 35. Srivastava, R., Choi, M., & Ryoo, R. (2006). Mesoporous materials with zeolite framework: Remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 43, 4489–4491. https://doi.org/10.1039/b612116k
- 36. Suárez, S., Jansson, I., Ohtani, B., & Sánchez, B. (2019). From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO 2 /zeolite hybrids for VOCs oxidation. Catalysis Today, 326, 2–7. https://doi.org/10.1016/j.cattod.2018.09.004
- 37. URL-1 (2015). https://solutions.shimadzu.co.jp/an/n/en/gcms/sio216012.pdf
- 38.Veses, A., Puértolas, B., López, J. M., Callén, M. S., Solsona, B., & García, T. (2016). Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. ACS Sustainable Chemistry & Engineering, 4(3), 1653-1660. https://doi.org/10.1021/acssuschemeng.5b01606
- 39. Yao, W., Li, J., Feng, Y., Wang, W., Zhang, X., Chen, Q., & Wang, Y. (2015). Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics. RSC Advances, 5(39), 30485-30494. https://doi.org/10.1039/C5RA02947C
- 40. Zheng, Y., Wang, F., Yang, X., Huang, Y., Liu, C., Zheng, Z., & Gu, J. (2017). Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis, 126, 169–179. https://doi.org/10.1016/j.jaap.2017.06.011