Research Article
BibTex RIS Cite

DETERMINATION OF TOTAL PHENOLIC, ANTIOXIDANT, CHLOROPHYLL AND CAROTENOID AMOUNTS OF Lavandula angustifolia (LAVENDER) AND Salvia rosmarinus (ROSEMARY) UNDER HEAVY METAL (Cu2+, Cd2+) STRESS

Year 2022, Volume: 5 Issue: 1, 65 - 77, 31.07.2022
https://doi.org/10.55930/jonas.1106377

Abstract

In this study, Total Phenolic, Antioxidant, Chlorophyll and Carotenoid amounts of Lavandula angustifolia and Salvia rosmarinus plants subjected to heavy metal stress were determined. Copper and cadmium were used as heavy metals. A decrease in total chlorophyll (Cl), chlorophyll-a (Cl-a), chlorophyll-b (Cl-b) and carotenoid amounts was observed for both plants. It was observed that there was an increase in the amount of total antioxidant and total phenolic substance. According to the results of S. rosmarinus for the amount of phenolic substances, 81.70±1.68 mg/g GAE for the control group; 84.60±2.09 mg/g GAE for the heavy metal group. According to the antioxidant substance content results, 3.92±0.08 mmol/g TEAC for the control group; 4.02±0.01 mmol/g TEAC for the heavy metal group. According to the results for L. angustifolia for phenolic amounts, 80.05±2.25 mg/g GAE for the control group; 88.65±2.52 mg/g GAE for the heavy metal group. According to the antioxidant substance content results, 3.91±0.01 mmol/g TEAC for the control group; It was obtained as 3.99±0.01 mmol/g TEAC for the heavy metal group. Total Cl amount was determined 1.71±0.03 mg/g for S. rosmarinus control group, 1.04±0.02 mg/g for heavy metal group. Cl-a amount was 0.42±0.02 mg/g for the control group, 0.25±0.02 mg/g for the heavy metal group. Cl-b amount was 0.69±0.02 mg/g for the control group, 0.35±0.01 mg/g for the heavy metal group. The total amount of carotenoids was determined as 0.24±0.01 mg/g for the control group and 0.20±0.01 mg/g for the heavy metal group. Total Cl amount was 0.80±0.02 mg/g for L. angustifolia control group, 0.68±0.03 mg/g for heavy metal group. The amount of Cl-a was 0.25±0.01 mg/g for the control group, 0.22±0.01 mg/g for the heavy metal group. The amount of Cl-b was 0.30±0.01 mg/g for the control group, 0.29±0.01 mg/g for the heavy metal group. Total carotenoid amount was determined as 0.14±0.02 mg/g for the control group and 0.11±0.01 mg/g for the heavy metal group. As a result of the analyzes, the total phenolic, total antioxidant, total chlorophyll and carotenoid amounts of rosemary and lavender plants were determined. SEM images were examined to observe whether the heavy metal application in the study caused changes on the plant leaves. It was observed that there was a decrease in the amounts of chlorophyll and carotenoids, and an increase in the amounts of antioxidants and phenolic substances.

References

  • 1. Ahsan, N., Renaut, J. & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9, 2602-2621.
  • 2. Algan, F.T.K. & Bilen, S. (2005). Toprak Kirlenmesi ve Biyolojik Çevre. Atatürk Üniversitesi. Ziraat Fakültesi Dergisi, 36/1. 83-88.
  • 3. Arnon, DI. (1949). “Copper enzymes in isolated chloroplasts Polyphanoloxidase in Beta vulgaris”. Journal of Plant Physiology, 24, 1-15.
  • 4. Atti-Santos, A. C., Rossato, M., Pauletti, G. F., Rota, L. D., Rech, J. C., Pansera, M. R., Agostini, F., Serafini, L. A. & Moyna, P. (2005). Physico-chemical Evaluation of Rosmarinus officinalis L. Essential Oils. Brazilian Archives of Biology and Technology An International Journal, 1035-1039.
  • 5. Aydoğan, S. (2012). “Pleurochaete squarrosa (Brid.) Lindb. ve Timmiella barbuloides (Brid.) Moenk.’in Ağır Metal Stresine Verdiği Cevapların Araştırılması” Doktora Tezi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Aydın, Türkiye.
  • 6. Balyemez, Ö., (2014). “Harran Ovası Koşullarında Farklı Lavanta (Lavandula spp.) Türlerinin Verim ve Bazı Bitkisel Özelliklerini Belirlenmesi”, Yüksek lisans tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, Türkiye.
  • 7. Barceló, J., Cobot, C. & Poschenrieder, C. (1986-a). Cadmium-induced decrease of water stres resistance in bush bean plants (Phaseolus vulgaris L. Cv. Contender). II. Effects of Cd on endogenous abscisic acid level. J. Plant Physiol. 125, 27-34.
  • 8. Barceló, J., Poschenrieder, C., Andreu, I. & Gunse, B. (1986-b). Cadmium-induced decrease of water stres resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticitiy. J. Plant Physiol. 125, 17-25.
  • 9. Benabdelkader, T., Zitounic, A. & Guitton, Y., (2011). “Essential oils from wild populations of algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties”, Chemistry & Biodiversity, 8 (5): 937-953.
  • 10. Bouazizi H., Jouili H., Geitmann A. & ElFerjani, E. (2010). Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety 73: 1304–1308.
  • 11. Bousbia, N., Vian, M. A., Ferhat, M. A., Petitcolas, E., Meklati, B. Y., & Chemat, F. (2009). Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry, 355–362.
  • 12. Carvalho, (2017). FP Carvalho Böcek İlacı, Çevre ve Gıda Güvenliği Gıda Enerjisi Güvencesi, 6 (2017), 48-60.
  • 13. Chen, G. & Djuric, Z. (2001). “Carotenoids are degraded by free radicals but do not affect lipid peroxidation in unilamellar liposomes under different oxygen tensions” FEBS Letters, 505, 151-154.
  • 14. Cunningham, S.D., Shann J.R., Crowley D.E. & Anderson T.A., (1997). Phytoremediation of Contaninated Water and Soil. Phytorematadion of Soil and Water Contaminants, American Chemical Society, Washington, D.C., 2-17.
  • 15. Deans, S.G. (2002). “Antimicrobial properties of lavender volatile oil”, Chapter :15, Ed: Maria Lis-Balchin: Lavander). Taylor&Francis, London, pp:283.
  • 16. Dunand, V.F., Epron, D., Sossé, A.B. & Badot, P.M., (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science, 163:53-58.
  • 17. Fornazier, R.F., Ferreira, R.R., Pereira, G.J.G., Molina, S.M.G., Smith, R.J., Lea, P.J. & Azevedo, R.A. (2002). Cadmium Stress in Sugar Cane Callus Cultures: Effect on Antioxidant Enzymes. Plant Cell Tissue Organ Cult., 71:125-131.
  • 18. Gecheva, G.M. & Yurukova, L.D. (2008). “Chlorophll Response of aquatik moss Fontinalis antipyretica Hedw. To Cu, Cd and Pb contamination ex situ” Proceedngs of the Anniversary Scientific Conference of Ecology, 293-299.
  • 19. Góra, J., Lis, A., Gibka, J., & Wołoszyn. A. (2005). “Najcenniejsze olejki eteryczne”. Toruń: Wydawnictwo Uniwersytetu Mikołaja Kopernika.
  • 20. Goyer, R. A. (1991). Toxic effects of metals. In: Caserett and Doull’s Toxicology. The Basic Science of Poisons (Eds. Amdur M. O., Doull, J., Klaassen, C. D.) Pergamon Press, New York, 1032.
  • 21. Kacar, B. & Katkat, V. (2006). Bitki besleme, Nobel Yayın no: 849.
  • 22. Kahvecioğlu, Ö., Kartal, G., Güven, A & Timur, S. (2006). Metallerin Çevresel Etkileri-I. www.metalurji.org.tr/dergi/dergi136/d136_4753.pdf. (11.03.2022)
  • 23. Lichtenthaler, H. & Wellburn, AR., (1983). “Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents” Biochemical Society Transactions 603, 591-593.
  • 24. Lo Presti, M., Ragusa, S., Trozzi, A., Dugo, P., Visinoni, F., Fazio, A., Dugo, G. & Mondello, L. (2005). A comparison between different techniques for the isolation of rosemary essential oil. Journal of Separation Science, 273–280.
  • 25. Lyons-Alcantara, M., Tarazona J.V. & Mothersill C. (1996). The differential effect of cadmium exposure on the growth and survival of primary and established cells from fish and mammals. Cell Biol. and Toxicol., 12: 29-38.
  • 26. Ma, J.F., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P. & Zhao, F.J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Science USA, 105, 9931-9935.
  • 27. McKersie D. B. & Leshem Y.Y. (1994). Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, The Netherlands.
  • 28. Meagher, R.B., (2000). “Phytorematadion of Toxic elemental and organic pollutants”. C.Op.İn Plant Biol., 3, 153-162.
  • 29. Miller N.J., Diplock A.T. & Rice-Evans C.A. (1995). Evaluation of the Total Antioxidant Activity as a Marker of the Deterioration of Apple Juice on Storage. Journal of Agricultural and Food Chemistry 43 (7), 1794-1801.
  • 30. Munné-Bosch, S. & Penvelas, J. (2004). Drought-induced oxidative stres in strawberry tree (Arbutus Unedo L.) growing in mediterranean field conditions. Plant Science, 166:1105-1110.
  • 31. Nováková, M., Matêjova, E. & Sofrová, D. (2004). Cd2+ effect on photosynthetic apparatus in Synechococcus elongatus and spinach (Spinacia oleracea L.). Photosynthetica, 42, 425-430.
  • 32. Nuhoğlu, Y., Malkoç E., Gürses A. & Canpolat N. (2002). Removal of Cu(II) from aqueous solution by Ulothrix zonata. Bioresource Technology 85(3), 331-333.
  • 33. Okcu M., Tozlu E, Kumlay A.M. & Pehluvan M. (2009). Ağır Metallerin Bitkiler Üzerine Etkileri. Alınteri Zirai Bilimler Dergisi. 17(2): 14-26.
  • 34. Ouzounidou, G. (1994). “Copper Induced Changes on Growth, Metal Content and Photosynhetic Functions of Alyssum montanum L.Plants” Envıronmental and Experımental Botany, 34,165-172.
  • 35. Öktüren Asri, F. & Sönmez, S. (2006). AĞIR METAL TOKSİSİTESİNİN BİTKİ METABOLİZMASI ÜZERİNE ETKİLERİ. Derim, 23 (2) , 36-45.
  • 36. Raven J.A., Evans M.C.W. & Korb R.E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Pho. Res. 60:111-149.
  • 37. Ruis-Jiménez, J., Luque-García, J.L. & Luque de Castro, M.D. (2003). Dynamic ultrasound-assisted extraction of cadmium and lead from plants prior to electrothermal atomic absoption spectrometry. Analytica Chimica Acta, 480: 231-237.
  • 38. Salt, D., Price, R., Pickering, I & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109, 1427-1433.
  • 39. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Puertas-Romero, M.C. & del Rio, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52 (362): 2115-2126.
  • 40. Satarug, S., Baker, J.R., Urbenjapol, S., Haswell-Elkins, M., Reilly, E.B., Wiliams, D.J. & Moore, M.R. (2003). A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population. Toxicology Letters, 137, 65-83.
  • 41. Saxena, D.K. & Md. Saiful-Arfeen (2009). “Effect of Cu and Cd on Oxidative Enzymes and Chlorophyll Content of Moss Racomitrium crispulum” Physiol. Mol. Biol. Plants. 54(4), 365-374.
  • 42. Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticul., 16(3):144–158.
  • 43. Shakya, K., Chettri, M.K. & Sawidis, T. (2008).“Impact of Heavy Metals (Copper, Zinc, and Lead) on the Chlorophyll Content of Some Mosses” Arch Environ Contam Toxicol 54, 412-421.
  • 44. Sheoran, I.S., Singal, H.R & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.). Photosynthesis Research, 23, 345-351.
  • 45. Sossé, B.A., Genet, p., Dunand-Vinit, F., Toussaint, L.M., Epron, D. & Badot, P.M. (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbonhydrate accumulation and changes in ion contents. Plant Science, 166; 1213-1218.
  • 46. Swiergosz, R., Zakrzewska, M., Sawıcka-Kapusta, K., Bacıa, K. & Jankowska, I. (1998). Accumulation of Cadmium And İts Effect On Bank Vole Tissues After Chronic Exposure. Ecotoxicol Environ. 41:130-136.
  • 47. Şahin, Ö., (2017). “Muğla karabaşının (Lavandula stoechas l.) yiyecek ve içecek olarak değerlendirilmesine yönelik bir öneri”, Journal of Tourism and Gastronomy Studies 5: 37-49.
  • 48. Taiz, L. & Zieger, E. (2002). Plant Physiology, 3rd edn., Sunderland, MA:Sinauer Associates, Inc.
  • 49. Upson, T., Andrews, S., (2004). “The Genus Lavandula”, Timber Press, Portland, Oregon, USA.
  • 50. Urano, K., Kurihara, Y., Seki, M. & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13, 132-138.
  • 51. Yıldız, A., Aksoy, A., Akbulut, G., Demirezen, D., Islek, C., Altuner, EM. & Duman, F. (2011). “Correlation Between Chlorophyll Degradation and the Amount of Heavy Metals Found in Pseudevernia Furfuracea in Kayseri (Turkey)” Ekoloji, 20 (78), 82-88.

AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ

Year 2022, Volume: 5 Issue: 1, 65 - 77, 31.07.2022
https://doi.org/10.55930/jonas.1106377

Abstract

Bu çalışmada, ağır metal stresi uygulanan Lavandula angustifolia (Lavanta) ve Salvia rosmarinus (Biberiye) bitkilerinin Toplam Fenolik, Antioksidan, Klorofil ve Karotenoid miktarları belirlenmiştir. Ağır metal olarak bakır (II) ve kadmiyum (II) kullanılmıştır. Çalışmadan elde edilen sonuçlara göre, ağır metal stresi uygulanan grupta toplam karotenoid miktarında bir düşüş yaşanmıştır. Kontrol grubu kıyas alınarak ağır metal grubuna ait sonuçlara bakıldığında, her iki bitki için toplam klorofil, klorofil-a ve klorofil-b miktarlarında bir azalma gözlemlenmiştir. Yapılan analizler ve ölçümler sonucunda 1 mM bakır çözeltisi ve 100 µM kadmiyum çözeltisi ile ağır metal stresi uygulanan bitkilerin etanol, metanol ve su çözücüleri için toplam fenolik, toplam antioksidan, toplam klorofil ve karotenoid miktarları belirlenmiştir. Ağır metal ve kontrol gruplarına uygulanan analizlerle birlikte ağır metal stresi uygulanan bitkiler ve kontrol grubundaki bitkiler için gözlemlenen farklılıklar ortaya konmuştur. Ağır metal uygulanan grupta, kontrol grubuna kıyasla, toplam antioksidan madde ve toplam flavonoid madde miktarında bir miktar artış gözlemlenmiştir. Çalışmadaki ağır metal uygulamasının, bitki yaprakları üzerindeki değişikliklere sebep olup olmadığını gözlemlemek için SEM görüntüleri incelenmiştir. Sonuç olarak ağır metal stresinde antioksidan ve fenolik madde miktarının arttığı, toplam klorofil ve toplam karotenoid miktarının ise azaldığı gözlenmiştir.

References

  • 1. Ahsan, N., Renaut, J. & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9, 2602-2621.
  • 2. Algan, F.T.K. & Bilen, S. (2005). Toprak Kirlenmesi ve Biyolojik Çevre. Atatürk Üniversitesi. Ziraat Fakültesi Dergisi, 36/1. 83-88.
  • 3. Arnon, DI. (1949). “Copper enzymes in isolated chloroplasts Polyphanoloxidase in Beta vulgaris”. Journal of Plant Physiology, 24, 1-15.
  • 4. Atti-Santos, A. C., Rossato, M., Pauletti, G. F., Rota, L. D., Rech, J. C., Pansera, M. R., Agostini, F., Serafini, L. A. & Moyna, P. (2005). Physico-chemical Evaluation of Rosmarinus officinalis L. Essential Oils. Brazilian Archives of Biology and Technology An International Journal, 1035-1039.
  • 5. Aydoğan, S. (2012). “Pleurochaete squarrosa (Brid.) Lindb. ve Timmiella barbuloides (Brid.) Moenk.’in Ağır Metal Stresine Verdiği Cevapların Araştırılması” Doktora Tezi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Aydın, Türkiye.
  • 6. Balyemez, Ö., (2014). “Harran Ovası Koşullarında Farklı Lavanta (Lavandula spp.) Türlerinin Verim ve Bazı Bitkisel Özelliklerini Belirlenmesi”, Yüksek lisans tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, Türkiye.
  • 7. Barceló, J., Cobot, C. & Poschenrieder, C. (1986-a). Cadmium-induced decrease of water stres resistance in bush bean plants (Phaseolus vulgaris L. Cv. Contender). II. Effects of Cd on endogenous abscisic acid level. J. Plant Physiol. 125, 27-34.
  • 8. Barceló, J., Poschenrieder, C., Andreu, I. & Gunse, B. (1986-b). Cadmium-induced decrease of water stres resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticitiy. J. Plant Physiol. 125, 17-25.
  • 9. Benabdelkader, T., Zitounic, A. & Guitton, Y., (2011). “Essential oils from wild populations of algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties”, Chemistry & Biodiversity, 8 (5): 937-953.
  • 10. Bouazizi H., Jouili H., Geitmann A. & ElFerjani, E. (2010). Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety 73: 1304–1308.
  • 11. Bousbia, N., Vian, M. A., Ferhat, M. A., Petitcolas, E., Meklati, B. Y., & Chemat, F. (2009). Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry, 355–362.
  • 12. Carvalho, (2017). FP Carvalho Böcek İlacı, Çevre ve Gıda Güvenliği Gıda Enerjisi Güvencesi, 6 (2017), 48-60.
  • 13. Chen, G. & Djuric, Z. (2001). “Carotenoids are degraded by free radicals but do not affect lipid peroxidation in unilamellar liposomes under different oxygen tensions” FEBS Letters, 505, 151-154.
  • 14. Cunningham, S.D., Shann J.R., Crowley D.E. & Anderson T.A., (1997). Phytoremediation of Contaninated Water and Soil. Phytorematadion of Soil and Water Contaminants, American Chemical Society, Washington, D.C., 2-17.
  • 15. Deans, S.G. (2002). “Antimicrobial properties of lavender volatile oil”, Chapter :15, Ed: Maria Lis-Balchin: Lavander). Taylor&Francis, London, pp:283.
  • 16. Dunand, V.F., Epron, D., Sossé, A.B. & Badot, P.M., (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science, 163:53-58.
  • 17. Fornazier, R.F., Ferreira, R.R., Pereira, G.J.G., Molina, S.M.G., Smith, R.J., Lea, P.J. & Azevedo, R.A. (2002). Cadmium Stress in Sugar Cane Callus Cultures: Effect on Antioxidant Enzymes. Plant Cell Tissue Organ Cult., 71:125-131.
  • 18. Gecheva, G.M. & Yurukova, L.D. (2008). “Chlorophll Response of aquatik moss Fontinalis antipyretica Hedw. To Cu, Cd and Pb contamination ex situ” Proceedngs of the Anniversary Scientific Conference of Ecology, 293-299.
  • 19. Góra, J., Lis, A., Gibka, J., & Wołoszyn. A. (2005). “Najcenniejsze olejki eteryczne”. Toruń: Wydawnictwo Uniwersytetu Mikołaja Kopernika.
  • 20. Goyer, R. A. (1991). Toxic effects of metals. In: Caserett and Doull’s Toxicology. The Basic Science of Poisons (Eds. Amdur M. O., Doull, J., Klaassen, C. D.) Pergamon Press, New York, 1032.
  • 21. Kacar, B. & Katkat, V. (2006). Bitki besleme, Nobel Yayın no: 849.
  • 22. Kahvecioğlu, Ö., Kartal, G., Güven, A & Timur, S. (2006). Metallerin Çevresel Etkileri-I. www.metalurji.org.tr/dergi/dergi136/d136_4753.pdf. (11.03.2022)
  • 23. Lichtenthaler, H. & Wellburn, AR., (1983). “Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents” Biochemical Society Transactions 603, 591-593.
  • 24. Lo Presti, M., Ragusa, S., Trozzi, A., Dugo, P., Visinoni, F., Fazio, A., Dugo, G. & Mondello, L. (2005). A comparison between different techniques for the isolation of rosemary essential oil. Journal of Separation Science, 273–280.
  • 25. Lyons-Alcantara, M., Tarazona J.V. & Mothersill C. (1996). The differential effect of cadmium exposure on the growth and survival of primary and established cells from fish and mammals. Cell Biol. and Toxicol., 12: 29-38.
  • 26. Ma, J.F., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P. & Zhao, F.J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Science USA, 105, 9931-9935.
  • 27. McKersie D. B. & Leshem Y.Y. (1994). Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, The Netherlands.
  • 28. Meagher, R.B., (2000). “Phytorematadion of Toxic elemental and organic pollutants”. C.Op.İn Plant Biol., 3, 153-162.
  • 29. Miller N.J., Diplock A.T. & Rice-Evans C.A. (1995). Evaluation of the Total Antioxidant Activity as a Marker of the Deterioration of Apple Juice on Storage. Journal of Agricultural and Food Chemistry 43 (7), 1794-1801.
  • 30. Munné-Bosch, S. & Penvelas, J. (2004). Drought-induced oxidative stres in strawberry tree (Arbutus Unedo L.) growing in mediterranean field conditions. Plant Science, 166:1105-1110.
  • 31. Nováková, M., Matêjova, E. & Sofrová, D. (2004). Cd2+ effect on photosynthetic apparatus in Synechococcus elongatus and spinach (Spinacia oleracea L.). Photosynthetica, 42, 425-430.
  • 32. Nuhoğlu, Y., Malkoç E., Gürses A. & Canpolat N. (2002). Removal of Cu(II) from aqueous solution by Ulothrix zonata. Bioresource Technology 85(3), 331-333.
  • 33. Okcu M., Tozlu E, Kumlay A.M. & Pehluvan M. (2009). Ağır Metallerin Bitkiler Üzerine Etkileri. Alınteri Zirai Bilimler Dergisi. 17(2): 14-26.
  • 34. Ouzounidou, G. (1994). “Copper Induced Changes on Growth, Metal Content and Photosynhetic Functions of Alyssum montanum L.Plants” Envıronmental and Experımental Botany, 34,165-172.
  • 35. Öktüren Asri, F. & Sönmez, S. (2006). AĞIR METAL TOKSİSİTESİNİN BİTKİ METABOLİZMASI ÜZERİNE ETKİLERİ. Derim, 23 (2) , 36-45.
  • 36. Raven J.A., Evans M.C.W. & Korb R.E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Pho. Res. 60:111-149.
  • 37. Ruis-Jiménez, J., Luque-García, J.L. & Luque de Castro, M.D. (2003). Dynamic ultrasound-assisted extraction of cadmium and lead from plants prior to electrothermal atomic absoption spectrometry. Analytica Chimica Acta, 480: 231-237.
  • 38. Salt, D., Price, R., Pickering, I & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109, 1427-1433.
  • 39. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Puertas-Romero, M.C. & del Rio, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52 (362): 2115-2126.
  • 40. Satarug, S., Baker, J.R., Urbenjapol, S., Haswell-Elkins, M., Reilly, E.B., Wiliams, D.J. & Moore, M.R. (2003). A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population. Toxicology Letters, 137, 65-83.
  • 41. Saxena, D.K. & Md. Saiful-Arfeen (2009). “Effect of Cu and Cd on Oxidative Enzymes and Chlorophyll Content of Moss Racomitrium crispulum” Physiol. Mol. Biol. Plants. 54(4), 365-374.
  • 42. Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticul., 16(3):144–158.
  • 43. Shakya, K., Chettri, M.K. & Sawidis, T. (2008).“Impact of Heavy Metals (Copper, Zinc, and Lead) on the Chlorophyll Content of Some Mosses” Arch Environ Contam Toxicol 54, 412-421.
  • 44. Sheoran, I.S., Singal, H.R & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.). Photosynthesis Research, 23, 345-351.
  • 45. Sossé, B.A., Genet, p., Dunand-Vinit, F., Toussaint, L.M., Epron, D. & Badot, P.M. (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbonhydrate accumulation and changes in ion contents. Plant Science, 166; 1213-1218.
  • 46. Swiergosz, R., Zakrzewska, M., Sawıcka-Kapusta, K., Bacıa, K. & Jankowska, I. (1998). Accumulation of Cadmium And İts Effect On Bank Vole Tissues After Chronic Exposure. Ecotoxicol Environ. 41:130-136.
  • 47. Şahin, Ö., (2017). “Muğla karabaşının (Lavandula stoechas l.) yiyecek ve içecek olarak değerlendirilmesine yönelik bir öneri”, Journal of Tourism and Gastronomy Studies 5: 37-49.
  • 48. Taiz, L. & Zieger, E. (2002). Plant Physiology, 3rd edn., Sunderland, MA:Sinauer Associates, Inc.
  • 49. Upson, T., Andrews, S., (2004). “The Genus Lavandula”, Timber Press, Portland, Oregon, USA.
  • 50. Urano, K., Kurihara, Y., Seki, M. & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13, 132-138.
  • 51. Yıldız, A., Aksoy, A., Akbulut, G., Demirezen, D., Islek, C., Altuner, EM. & Duman, F. (2011). “Correlation Between Chlorophyll Degradation and the Amount of Heavy Metals Found in Pseudevernia Furfuracea in Kayseri (Turkey)” Ekoloji, 20 (78), 82-88.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Food Engineering
Journal Section Articles
Authors

Abayhan Buran 0000-0003-4204-8638

Murat Ersin Durğun 0000-0003-2651-1063

Erhan Karaman

Publication Date July 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Buran, A., Durğun, M. E., & Karaman, E. (2022). AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ. Bartın University International Journal of Natural and Applied Sciences, 5(1), 65-77. https://doi.org/10.55930/jonas.1106377
AMA Buran A, Durğun ME, Karaman E. AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ. JONAS. July 2022;5(1):65-77. doi:10.55930/jonas.1106377
Chicago Buran, Abayhan, Murat Ersin Durğun, and Erhan Karaman. “AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula Angustifolia (LAVANTA) VE Salvia Rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ”. Bartın University International Journal of Natural and Applied Sciences 5, no. 1 (July 2022): 65-77. https://doi.org/10.55930/jonas.1106377.
EndNote Buran A, Durğun ME, Karaman E (July 1, 2022) AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ. Bartın University International Journal of Natural and Applied Sciences 5 1 65–77.
IEEE A. Buran, M. E. Durğun, and E. Karaman, “AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ”, JONAS, vol. 5, no. 1, pp. 65–77, 2022, doi: 10.55930/jonas.1106377.
ISNAD Buran, Abayhan et al. “AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula Angustifolia (LAVANTA) VE Salvia Rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ”. Bartın University International Journal of Natural and Applied Sciences 5/1 (July 2022), 65-77. https://doi.org/10.55930/jonas.1106377.
JAMA Buran A, Durğun ME, Karaman E. AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ. JONAS. 2022;5:65–77.
MLA Buran, Abayhan et al. “AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula Angustifolia (LAVANTA) VE Salvia Rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ”. Bartın University International Journal of Natural and Applied Sciences, vol. 5, no. 1, 2022, pp. 65-77, doi:10.55930/jonas.1106377.
Vancouver Buran A, Durğun ME, Karaman E. AĞIR METAL (Cu2+, Cd2+) STRESİ UYGULANAN Lavandula angustifolia (LAVANTA) VE Salvia rosmarinus (BİBERİYE) BİTKİLERİNİN TOPLAM FENOLİK, ANTİOKSİDAN, KLOROFİL VE KAROTENOİD MİKTARININ BELİRLENMESİ. JONAS. 2022;5(1):65-77.