Review
BibTex RIS Cite

ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI

Year 2025, Volume: 8 Issue: 1, 157 - 177, 31.07.2025

Abstract

Dijital ikiz, fiziksel ve dijital sistemler arasında, sürekli veri akışı ve senkronizasyon sağlayarak, süreçlerin izlenmesini, optimize edilmesini ve hata tahminini mümkün kılan bir Endüstri 4.0 teknolojisidir. Dijital İkiz (Dİ) teknolojisi, Siber-Fiziksel Sistemler (SFS) ve akıllı üretim süreçlerinin izlenmesi ve kontrol edilmesinde önemli bir rol oynamaktadır. Hem akademik hem de endüstriyel alanda yaygın olarak araştırılan Dİ’ler, akıllı üretimde kritik bir teknoloji olarak görülmektedir. ISO 23247 standardı, üretimde dijital ikizler için varlık tabanlı bir referans modeli ve işlevsel varlıklar açısından tanımlanan işlevsel bir bakış açısını içeren bir referans mimari önermektedir. Bu araştırmada, Dİ’lerin, Endüstri 4.0 ve 5.0 sürecinde kullanımı ile ilgili literatürde yapılan çalışmalar incelenmiştir. Dİ’ler için önerilen ISO 23247 standardı açıklanmış ve kullanımı ile sağladığı katkılar araştırılmıştır. Dijital İkizler ‘in araştırma ve sanayide, otomotiv, biyoloji, tıp ve üretim gibi birçok alanda Siber-Fiziksel Sistemleri izlemek ve kontrol etmek için kullanıldığı çalışmalar analiz edilmiştir. Dİ’lerin Siber-Fiziksel Üretim Sistemleri'ni iyileştirmek için kullanıldığı belirlenmiştir. Dijital ikizlerin, karmaşık durumlarda karar destek aracı olarak kullanılabileceği, gerçek sistem davranışını tahmin edebileceği ve çözüm arayışlarında yardımcı olabileceği belirlenmiştir. Dijital ikizlerin, sistemlerin gelecekteki durumlarını anlamak için gerekli veriyi sağlayabilmesi ve sanal sistemle gerçek sistemi senkronize edebilmesi gerektiği tespit edilmiştir. Dijital ikizler, otomasyonun yüksek olduğu ortamlarda daha etkili uygulanabileceği gözlemlenmiştir.

References

  • Aheleroff, S., Xu , X., Zhong, R. Y., & Lu, Y. (2021). Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Advanced Engineering Informatics 47. doi:https://doi.org/10.1016/j.aei.2020.101225.
  • Aheleroff, S., Zhong, R., & Xu, X. (2020). A Digital Twin Reference forMass Personalization in Industry 4.0. ScienceDirect, 228–233. http://creativecommons.org/licenses/by-nc-nd/4.0/ adresinden alındı.
  • Aydoğmuş, U.; Engin, O. (2021). Endüstri 4.0 Sürecinde Ağırlama Sektörüne Yönelik Uygulamaların İncelemesi. İstanbul Aydın Üniversitesi Sosyal Bilimler Dergisi, 13(3), 851-874. DOI:10.17932/IAU.IAUSBD.2021.021/iausbd_v13i3013.
  • Brandstetter, A., Risling, M., Himmelstoss, H., Schel, D., & Oberle, M. (2023). Towards A Design Of A Software-Defined Manufacturing System. Conference on Productıon Systems and Logıstıcs, 479-488. doi:https://doi.org/10.15488/13466.
  • Bitencourt, J., Wooleyb, A., Harrisa G. (2025).Verification and validation of digital twins: a systematic literature review for manufacturing applications, Internatıonal Journal of Productıon Research, 63, 1, 342 370. https://doi.org/10.1080/00207543.2024.2357741.
  • Cabral, J. V., Alvares, J. A., & Carvalho, G. C. (2024). Digital Twin Implementation for Additive Manufacturing Robotic Cell based on ISO 23247 Standard. IEEE Latin America Transactions, 651-658.
  • Cabral, J., Rodriguez, E., & Alvares, A. (2023). Digital Twin Implementation for Machining Center. IEEE Latin America Transactions, 628-635.
  • Caiza, G., & Sanz, R. (2024). An Immersive Digital Twin Applied to a Manufacturing. Applied Sciences, 2-20. doi:https://doi.org/10.3390/app14104125.
  • Caiza, G., & Sanz, R. (2024a). Immersive Digital Twin under ISO 23247 Applied to Flexible. Applied Sciences, 14, 10, 1-19. doi:https://doi.org/10.3390/app14104204.
  • Engin, O., Sarıcan, B. (2024). Makine Çizelgeleme Problemlerinin Çözümünde Pekiştirmeli Öğrenme Etkisinin Analizi, ALKU Journal of Science, 6(2): 116-140. https://doi.org/10.46740/alku.1390397.
  • Fadaie, R., Sinderen, M. V., & Silva, P. A. (2022). Towards a Digital Twin for Simulation of Organizational and. IEEE Access, 51-110. https://www.researchgate.net/publication/360237553_Towards_a_Digital_Twin_for_Simulation_of_Organizational_and_Semantic_Interoperability_in_IDS_Ecosystems adresinden alındı.
  • Farhadi, A., Lee, S. H., Hinchy, E. P., O’Dowd, N. P., & McCarthy, C. T. (2022). The Development of a Digital Twin Framework for an Industrial Robotic Drilling Process. Sensors 22. doi:https:// doi.org/10.3390/s22197232.
  • Ferko, E., Berardinelli, L., Bucaioni, A., Behnam, M., & Wimmer, M. (2024). Towards Interoperable Digital Twins: Integrating SysML into AAS with Higher-Order Transformations. IEEE 21st International Conference on Software Architecture Companion, 342-349. doi:10.1109/ICSA-C63560.2024.00063.
  • Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Standardisation in Digital Twin Architectures in. International Conference on Software Architecture (ICSA), 70-81. doi:10.1109/ICSA56044.2023.00015.
  • Hasan, M. A., Mustofa, R., Hossain, N. U. I., Islam, M. S. (2025). Smart health practices: Strategies to improve healthcare efficiency through digital twin technology. Smart Health, 36, 100541. https://doi.org/10.1016/j.smhl.2025.100541.
  • Jacoby, M., Volz, F., Weißenbacher, C., Stojanovic, L., & Usländer, T. (2021). An approach for Industrie 4.0-compliant and data-sovereign Digital Twins. De Gruyter, 1052-1060. doi: https://doi.org/10.1515/auto-2021-0074.
  • Kına, E., Biçek, E., İnan, M., Gümüş, O., Alkan A. U. (2024). Üniversitelerde Dijital Araç Yönetimi: Van Yüzüncü Yıl Üniversitesi Örneğiyle Web Tabanlı Araç Takip ve İzleme Sistemi. Bartin University International Journal of Natural and Applied Sciences, JONAS, 7 (2): 98-111. DOI: 10.55930/jonas.1592290.
  • Kına, E. (2025). TLEABLCNN: Brain and Alzheimer’s Disease Detection Using Attention-Based Explainable Deep Learning and SMOTE Using Imbalanced Brain MRI. IEEE, Access, 13, 27670-27683. DOI: 10.1109/ACCESS.2025.3539550.
  • Kibira, D., Shao, G., & Venketesh, R. (2023). Building A Digital Twin of an Automated Robot Workcell. National Institute of Standards and Technolog, 196-207.
  • Kim, D. B., Shao, G., & Jo, G. (2022). A digital twin implementation architecture for wire + arc additive. Manufacturing Letters, 1-5. doi:https://doi.org/10.1016/j.mfglet.2022.08.008.
  • Klar, R., & Angelakis, V. (2023). Standardized and Interoperable Digital Twins. IEEE Conference on Standards for Communications and Networking, 382. doi:10.1109/CSCN60443.2023.10453189.
  • Kumaş, E., & Erol, S. (2021). Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi, 24(2), 691-701.
  • Link, P., Penter, L., Rückert, U., Klingel, L., Verl, A., & Ihlenfeldt, S. (2025). Real-time quality prediction and local adjustment of friction with digital twin in sheet metal forming. Robotics and Computer-Integrated Manufacturing, 91, 102848.
  • Liu, J., Liu, X., Vatn, J., & Yin, S. (2023). A generic framework for qualifications of digital twins in maintenance. Journal of Automation and Intelligence, 197-203. doi: https://doi.org/10.1016/j.jai.2023.07.002.
  • Manzak, R., Engin, O. (2023). Akıllı fabrikalarda çizelgeleme yöntemlerinin analizi, Verimlilik Dergisi, 57(4), 761-774. https://doi.org/10.51551/verimlilik.1136778.
  • Marinković, M., Galka, S., & Meißner, S. (2023). Digital Twins for Internal Transport Systems: Use Cases, Functions, and. Proceedings of the 56th Hawaii International Conference on System Sciences, 1195-1204. https://hdl.handle.net/10125/102777 adresinden alındı.
  • Marino, A., Pariso, P., & Picariello, M. (2024). Digital twin in SMEs: Implementing advanced digital technologies for engineering advancements. In Macromolecular Symposia, 413, 3, 2300176).
  • Melo, V., Barbosa, J., Mota, G., & Leitao, P. (2024). Design of an ISO 23247 Compliant Digital Twin. IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS. doi:10.1109/ICPS59941.2024.10640052.
  • Noga, M., Juhás, M., & Gulan, M. (2022). Hybrid Virtual Commissioning of a Robotic Manipulator with. Sensors, 1-17. doi:https://doi.org/10.3390/s22041621.
  • Poechgraber, G., Bougain, S., Wallner, B., Bohaty, G., Trautner, T., & Bleicher, F. (2023). Introduction of a Digital Twin for the Product. International Conference on Engineering Management of Communication and Technology (EMCTECH). doi:10.1109/EMCTECH58502.2023.10297012.
  • Reed, S., Löfstrand, M., & Andrews, J. (2021). Modelling cycle for simulation digital twins. Manufacturing Letters 28, 54-58. doi: https://doi.org/10.1016/j.mfglet.2021.04.004.
  • Renard, D., Saddem, R., Annebıcque, D., & Rıera, B. (2023). Painting of the digital twin to better understand and implement it in manufacturing. Prosyst/CReSTIC, 1-25. doi:https://doi.org/10.3390/app14104125.
  • Risling, M., Himmelstoss, H., Brandstetter, A., Shi, D., & Bauernhansl, B. (2023). Bridging The Gap: A Framework For Structuring The Asset Administration Shell In Digital Twin Implementation For Industry 4.0. Conference on Productıon Systems and Logıstıcs, 760-770. doi:https://doi.org/10.15488/15286.
  • Saxby, D., Pizzolato, C., & Diamond, L. (2023). A Digital Twin Framework for Precision Neuromusculoskeletal. Human Kinetics, Inc., 347-354. doi:https://doi.org/10.1123/jab.2023-0114.
  • Serugendo, G. D., Decelle, A.-F. C., Guise, L., Cormenier, T., Khan, I., & Hossenlopp, L. (2022). Digital Twins: From Conceptual Views to Industrial Applications in the Electrical Domain. IEEE Latın Amerıca Transactıons. doi: 10.1109/MC.2022.3156847.
  • Shaimergenova, K., Ali , M. H., & Shehab, E. (2023). Development of Middleware for Data-Centric Digital Twin of Additive Manufacturing. IEEE Smart Information Systems and Technologies (SIST), 412-415. doi:10.1109/SIST58284.2023.10223565.
  • Shao, G. (2021). Use Case Scenarios for Digital Twin Implementation Based on ISO 23247. NIST Advanced Manufacturing Series, 400-2. doi:https://doi.org/10.6028/NIST.AMS.400-2.
  • Shao, G., & Helu, M. (2020). Framework for a digital twin in manufacturing: Scope and requirements. Manufacturing Letters, 105-107. doi: https://doi.org/10.1016/j.mfglet.2020.04.004.
  • Shao, G., Hightower, J., & Schindel, W. (2023). Credibility Consideration for Digital Twins in Manufacturing. Manufacturing Letters, 24-28. doi: https://doi.org/10.1016/j.mfglet.2022.11.009.
  • Spaney, P., Becker, S., Ströbel, R., Fleischer, J., Zenhari, S., Splettstößer, A.-K., & Wortmann, A. (2023). A Model-Driven Digital Twin for Manufacturing Process Adaptation. ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C, 465-469. doi:10.1109/MODELS-C59198.2023.00081.
  • VanDerHorn, E., Mahadevan, S. (2021). Digital Twin: Generalization, characterization and implementation, Decision Support Systems, 145, 1- 11, 113524. https://doi.org/10.1016/j.dss.2021.113524.
  • Verdecchia, R., Scommegna, L., Vicario, E., & Pecorella, T. (2023). Network Digital Twins: Towards a Future Proof. Proceedings of the 2023 International Conference on Network and Service Management, 1-10.
  • Wallner, B., Zw¨olfer, B., Trautner, T., & Bleicher, F. (2023). Digital Twin Development and Operation of a Flexible Manufacturing Cell using ISO 23247. Procedia CIRP, 1149-1154. doi:10.1016/j.procir.2023.09.14044. Yasser, A., & Broberg, A. (2023). Digital Twins for Verification and Valida. Chalmers University of Technology, 4-22.
  • Yasin, A., Pang, T. Y., Cheng, C. T., & Miletic, M. (2021). A roadmap to integrate digital twins for small and medium-sized enterprises. Applied Sciences, 11(20), 9479.
  • Yiğit, G.; Engin, O. (2025). Endüstri 5.0 ile Sürdürülebilirliğin sağlanması: Bir Bibliyometrik Analiz. İstanbul Aydın Üniversitesi Sosyal Bilimler Dergisi, 17(1), 23-46. 10.17932/IAU.IAUSBD.2021.021/iausbd_v17i1002.
  • Zheng, J., Zhang, J. Z., Kamal, M. M., & Mangla, S. K. (2025). A Dual Evolutionary Perspective on the Co-Evolution of Data-Driven Digital Transformation and Value Proposition in Manufacturing SMEs. International Journal of Production Economics, 109561.

USE OF DIGITAL TWINS IN PRODUCTION: ISO 23247 STANDARD

Year 2025, Volume: 8 Issue: 1, 157 - 177, 31.07.2025

Abstract

Digital twin is an Industry 4.0 technology that enables monitoring, optimizing, and error prediction of processes by providing continuous data flow and synchronization between physical and digital systems. Digital Twin (DT) technology plays an important role in monitoring and controlling Cyber-Physical Systems (CPS) and smart manufacturing processes. DTs, which are widely researched in both academic and industrial fields, are seen as a critical technology in smart manufacturing. In manufacturing environments, digital twin frameworks are often used in Product Lifecycle Management, machine tool cyber twins and robotic assembly applications, in many sectors such as security, construction, transportation and healthcare, to simplify product maintenance, reduce costs and increase safety standards. New models are supported by technologies such as Internet of Things (IoT) devices, sensor data, artificial intelligence and blockchain. Although the concept of digital twins has attracted great interest in academic and industrial fields, it poses some challenges, especially for small and medium-sized enterprises (SMEs). The most important of these challenges is that the terminology and application standards for digital twins are not yet fully established. For digital twins to be widely used in production, standardized definitions, common terminologies and application frameworks are needed. To address these needs, ISO 21597, developed by the International Organization for Standardization (ISO), provides data containers and connectivity, while ITU-T Y.3090 and ISO 23247 provide frameworks that support the process of creating digital twins. The ISO 23247 standard was published in 2020 by the ISO TC 184/SC 4 committee to support the development of digital twins in manufacturing applications. The standard provides a comprehensive architectural framework for the creation of digital twins and provides an adaptable structure for different types of manufacturing. It proposes a flexible structure based on existing standards and technologies, especially for modeling observable elements in manufacturing environments. The ISO 23247 standard proposes a reference architecture for digital twins in manufacturing, including an asset-based reference model and a functional perspective defined in terms of functional assets. Digital twins can be used for different purposes.
DTs provide bidirectional and automatic data flow with physical systems, reflecting the current state of the system and predicting and optimizing performance. Discrete Event Simulation (DES) is a widely used technique for the analysis and optimization of industrial systems. DES models simulate the operation of real systems by monitoring the interactions between various events and the system state at discrete times. These traditional applications of simulation are based on creating a static model and performing analyses on it, and the model is usually retired after a single analysis. In this research, studies in the literature on the use of DTs in the Industry 4.0 and 5.0 process were examined.
The lack of standards regarding the terms, architecture and models for DTs leads users to understand DTs differently when developing applications that enable DTs, making it difficult to connect data, models and services across different companies or domains. Therefore, developing DTs according to standardized reference architectures is a future necessity to ensure their adoption and facilitate their creation, processing and integration.

References

  • Aheleroff, S., Xu , X., Zhong, R. Y., & Lu, Y. (2021). Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Advanced Engineering Informatics 47. doi:https://doi.org/10.1016/j.aei.2020.101225.
  • Aheleroff, S., Zhong, R., & Xu, X. (2020). A Digital Twin Reference forMass Personalization in Industry 4.0. ScienceDirect, 228–233. http://creativecommons.org/licenses/by-nc-nd/4.0/ adresinden alındı.
  • Aydoğmuş, U.; Engin, O. (2021). Endüstri 4.0 Sürecinde Ağırlama Sektörüne Yönelik Uygulamaların İncelemesi. İstanbul Aydın Üniversitesi Sosyal Bilimler Dergisi, 13(3), 851-874. DOI:10.17932/IAU.IAUSBD.2021.021/iausbd_v13i3013.
  • Brandstetter, A., Risling, M., Himmelstoss, H., Schel, D., & Oberle, M. (2023). Towards A Design Of A Software-Defined Manufacturing System. Conference on Productıon Systems and Logıstıcs, 479-488. doi:https://doi.org/10.15488/13466.
  • Bitencourt, J., Wooleyb, A., Harrisa G. (2025).Verification and validation of digital twins: a systematic literature review for manufacturing applications, Internatıonal Journal of Productıon Research, 63, 1, 342 370. https://doi.org/10.1080/00207543.2024.2357741.
  • Cabral, J. V., Alvares, J. A., & Carvalho, G. C. (2024). Digital Twin Implementation for Additive Manufacturing Robotic Cell based on ISO 23247 Standard. IEEE Latin America Transactions, 651-658.
  • Cabral, J., Rodriguez, E., & Alvares, A. (2023). Digital Twin Implementation for Machining Center. IEEE Latin America Transactions, 628-635.
  • Caiza, G., & Sanz, R. (2024). An Immersive Digital Twin Applied to a Manufacturing. Applied Sciences, 2-20. doi:https://doi.org/10.3390/app14104125.
  • Caiza, G., & Sanz, R. (2024a). Immersive Digital Twin under ISO 23247 Applied to Flexible. Applied Sciences, 14, 10, 1-19. doi:https://doi.org/10.3390/app14104204.
  • Engin, O., Sarıcan, B. (2024). Makine Çizelgeleme Problemlerinin Çözümünde Pekiştirmeli Öğrenme Etkisinin Analizi, ALKU Journal of Science, 6(2): 116-140. https://doi.org/10.46740/alku.1390397.
  • Fadaie, R., Sinderen, M. V., & Silva, P. A. (2022). Towards a Digital Twin for Simulation of Organizational and. IEEE Access, 51-110. https://www.researchgate.net/publication/360237553_Towards_a_Digital_Twin_for_Simulation_of_Organizational_and_Semantic_Interoperability_in_IDS_Ecosystems adresinden alındı.
  • Farhadi, A., Lee, S. H., Hinchy, E. P., O’Dowd, N. P., & McCarthy, C. T. (2022). The Development of a Digital Twin Framework for an Industrial Robotic Drilling Process. Sensors 22. doi:https:// doi.org/10.3390/s22197232.
  • Ferko, E., Berardinelli, L., Bucaioni, A., Behnam, M., & Wimmer, M. (2024). Towards Interoperable Digital Twins: Integrating SysML into AAS with Higher-Order Transformations. IEEE 21st International Conference on Software Architecture Companion, 342-349. doi:10.1109/ICSA-C63560.2024.00063.
  • Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Standardisation in Digital Twin Architectures in. International Conference on Software Architecture (ICSA), 70-81. doi:10.1109/ICSA56044.2023.00015.
  • Hasan, M. A., Mustofa, R., Hossain, N. U. I., Islam, M. S. (2025). Smart health practices: Strategies to improve healthcare efficiency through digital twin technology. Smart Health, 36, 100541. https://doi.org/10.1016/j.smhl.2025.100541.
  • Jacoby, M., Volz, F., Weißenbacher, C., Stojanovic, L., & Usländer, T. (2021). An approach for Industrie 4.0-compliant and data-sovereign Digital Twins. De Gruyter, 1052-1060. doi: https://doi.org/10.1515/auto-2021-0074.
  • Kına, E., Biçek, E., İnan, M., Gümüş, O., Alkan A. U. (2024). Üniversitelerde Dijital Araç Yönetimi: Van Yüzüncü Yıl Üniversitesi Örneğiyle Web Tabanlı Araç Takip ve İzleme Sistemi. Bartin University International Journal of Natural and Applied Sciences, JONAS, 7 (2): 98-111. DOI: 10.55930/jonas.1592290.
  • Kına, E. (2025). TLEABLCNN: Brain and Alzheimer’s Disease Detection Using Attention-Based Explainable Deep Learning and SMOTE Using Imbalanced Brain MRI. IEEE, Access, 13, 27670-27683. DOI: 10.1109/ACCESS.2025.3539550.
  • Kibira, D., Shao, G., & Venketesh, R. (2023). Building A Digital Twin of an Automated Robot Workcell. National Institute of Standards and Technolog, 196-207.
  • Kim, D. B., Shao, G., & Jo, G. (2022). A digital twin implementation architecture for wire + arc additive. Manufacturing Letters, 1-5. doi:https://doi.org/10.1016/j.mfglet.2022.08.008.
  • Klar, R., & Angelakis, V. (2023). Standardized and Interoperable Digital Twins. IEEE Conference on Standards for Communications and Networking, 382. doi:10.1109/CSCN60443.2023.10453189.
  • Kumaş, E., & Erol, S. (2021). Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi, 24(2), 691-701.
  • Link, P., Penter, L., Rückert, U., Klingel, L., Verl, A., & Ihlenfeldt, S. (2025). Real-time quality prediction and local adjustment of friction with digital twin in sheet metal forming. Robotics and Computer-Integrated Manufacturing, 91, 102848.
  • Liu, J., Liu, X., Vatn, J., & Yin, S. (2023). A generic framework for qualifications of digital twins in maintenance. Journal of Automation and Intelligence, 197-203. doi: https://doi.org/10.1016/j.jai.2023.07.002.
  • Manzak, R., Engin, O. (2023). Akıllı fabrikalarda çizelgeleme yöntemlerinin analizi, Verimlilik Dergisi, 57(4), 761-774. https://doi.org/10.51551/verimlilik.1136778.
  • Marinković, M., Galka, S., & Meißner, S. (2023). Digital Twins for Internal Transport Systems: Use Cases, Functions, and. Proceedings of the 56th Hawaii International Conference on System Sciences, 1195-1204. https://hdl.handle.net/10125/102777 adresinden alındı.
  • Marino, A., Pariso, P., & Picariello, M. (2024). Digital twin in SMEs: Implementing advanced digital technologies for engineering advancements. In Macromolecular Symposia, 413, 3, 2300176).
  • Melo, V., Barbosa, J., Mota, G., & Leitao, P. (2024). Design of an ISO 23247 Compliant Digital Twin. IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS. doi:10.1109/ICPS59941.2024.10640052.
  • Noga, M., Juhás, M., & Gulan, M. (2022). Hybrid Virtual Commissioning of a Robotic Manipulator with. Sensors, 1-17. doi:https://doi.org/10.3390/s22041621.
  • Poechgraber, G., Bougain, S., Wallner, B., Bohaty, G., Trautner, T., & Bleicher, F. (2023). Introduction of a Digital Twin for the Product. International Conference on Engineering Management of Communication and Technology (EMCTECH). doi:10.1109/EMCTECH58502.2023.10297012.
  • Reed, S., Löfstrand, M., & Andrews, J. (2021). Modelling cycle for simulation digital twins. Manufacturing Letters 28, 54-58. doi: https://doi.org/10.1016/j.mfglet.2021.04.004.
  • Renard, D., Saddem, R., Annebıcque, D., & Rıera, B. (2023). Painting of the digital twin to better understand and implement it in manufacturing. Prosyst/CReSTIC, 1-25. doi:https://doi.org/10.3390/app14104125.
  • Risling, M., Himmelstoss, H., Brandstetter, A., Shi, D., & Bauernhansl, B. (2023). Bridging The Gap: A Framework For Structuring The Asset Administration Shell In Digital Twin Implementation For Industry 4.0. Conference on Productıon Systems and Logıstıcs, 760-770. doi:https://doi.org/10.15488/15286.
  • Saxby, D., Pizzolato, C., & Diamond, L. (2023). A Digital Twin Framework for Precision Neuromusculoskeletal. Human Kinetics, Inc., 347-354. doi:https://doi.org/10.1123/jab.2023-0114.
  • Serugendo, G. D., Decelle, A.-F. C., Guise, L., Cormenier, T., Khan, I., & Hossenlopp, L. (2022). Digital Twins: From Conceptual Views to Industrial Applications in the Electrical Domain. IEEE Latın Amerıca Transactıons. doi: 10.1109/MC.2022.3156847.
  • Shaimergenova, K., Ali , M. H., & Shehab, E. (2023). Development of Middleware for Data-Centric Digital Twin of Additive Manufacturing. IEEE Smart Information Systems and Technologies (SIST), 412-415. doi:10.1109/SIST58284.2023.10223565.
  • Shao, G. (2021). Use Case Scenarios for Digital Twin Implementation Based on ISO 23247. NIST Advanced Manufacturing Series, 400-2. doi:https://doi.org/10.6028/NIST.AMS.400-2.
  • Shao, G., & Helu, M. (2020). Framework for a digital twin in manufacturing: Scope and requirements. Manufacturing Letters, 105-107. doi: https://doi.org/10.1016/j.mfglet.2020.04.004.
  • Shao, G., Hightower, J., & Schindel, W. (2023). Credibility Consideration for Digital Twins in Manufacturing. Manufacturing Letters, 24-28. doi: https://doi.org/10.1016/j.mfglet.2022.11.009.
  • Spaney, P., Becker, S., Ströbel, R., Fleischer, J., Zenhari, S., Splettstößer, A.-K., & Wortmann, A. (2023). A Model-Driven Digital Twin for Manufacturing Process Adaptation. ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C, 465-469. doi:10.1109/MODELS-C59198.2023.00081.
  • VanDerHorn, E., Mahadevan, S. (2021). Digital Twin: Generalization, characterization and implementation, Decision Support Systems, 145, 1- 11, 113524. https://doi.org/10.1016/j.dss.2021.113524.
  • Verdecchia, R., Scommegna, L., Vicario, E., & Pecorella, T. (2023). Network Digital Twins: Towards a Future Proof. Proceedings of the 2023 International Conference on Network and Service Management, 1-10.
  • Wallner, B., Zw¨olfer, B., Trautner, T., & Bleicher, F. (2023). Digital Twin Development and Operation of a Flexible Manufacturing Cell using ISO 23247. Procedia CIRP, 1149-1154. doi:10.1016/j.procir.2023.09.14044. Yasser, A., & Broberg, A. (2023). Digital Twins for Verification and Valida. Chalmers University of Technology, 4-22.
  • Yasin, A., Pang, T. Y., Cheng, C. T., & Miletic, M. (2021). A roadmap to integrate digital twins for small and medium-sized enterprises. Applied Sciences, 11(20), 9479.
  • Yiğit, G.; Engin, O. (2025). Endüstri 5.0 ile Sürdürülebilirliğin sağlanması: Bir Bibliyometrik Analiz. İstanbul Aydın Üniversitesi Sosyal Bilimler Dergisi, 17(1), 23-46. 10.17932/IAU.IAUSBD.2021.021/iausbd_v17i1002.
  • Zheng, J., Zhang, J. Z., Kamal, M. M., & Mangla, S. K. (2025). A Dual Evolutionary Perspective on the Co-Evolution of Data-Driven Digital Transformation and Value Proposition in Manufacturing SMEs. International Journal of Production Economics, 109561.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Articles
Authors

Orhan Engin 0000-0002-7250-0317

Kadircan Muhammet Yazıcı 0009-0000-3837-1059

Emre Yaşa 0009-0002-1064-1330

Furkan Çakırköy

Publication Date July 31, 2025
Submission Date January 25, 2025
Acceptance Date April 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Engin, O., Yazıcı, K. M., Yaşa, E., Çakırköy, F. (2025). ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI. Bartın University International Journal of Natural and Applied Sciences, 8(1), 157-177. https://doi.org/10.55930/jonas.1626558
AMA Engin O, Yazıcı KM, Yaşa E, Çakırköy F. ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI. JONAS. July 2025;8(1):157-177. doi:10.55930/jonas.1626558
Chicago Engin, Orhan, Kadircan Muhammet Yazıcı, Emre Yaşa, and Furkan Çakırköy. “ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI”. Bartın University International Journal of Natural and Applied Sciences 8, no. 1 (July 2025): 157-77. https://doi.org/10.55930/jonas.1626558.
EndNote Engin O, Yazıcı KM, Yaşa E, Çakırköy F (July 1, 2025) ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI. Bartın University International Journal of Natural and Applied Sciences 8 1 157–177.
IEEE O. Engin, K. M. Yazıcı, E. Yaşa, and F. Çakırköy, “ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI”, JONAS, vol. 8, no. 1, pp. 157–177, 2025, doi: 10.55930/jonas.1626558.
ISNAD Engin, Orhan et al. “ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI”. Bartın University International Journal of Natural and Applied Sciences 8/1 (July 2025), 157-177. https://doi.org/10.55930/jonas.1626558.
JAMA Engin O, Yazıcı KM, Yaşa E, Çakırköy F. ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI. JONAS. 2025;8:157–177.
MLA Engin, Orhan et al. “ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI”. Bartın University International Journal of Natural and Applied Sciences, vol. 8, no. 1, 2025, pp. 157-7, doi:10.55930/jonas.1626558.
Vancouver Engin O, Yazıcı KM, Yaşa E, Çakırköy F. ÜRETİMDE DİJİTAL İKİZLERİN KULLANIMI: ISO 23247 STANDARDI. JONAS. 2025;8(1):157-7.