Research Article
BibTex RIS Cite

Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?

Year 2021, , 875 - 879, 01.09.2021
https://doi.org/10.28982/josam.977023

Abstract

Background/Aim: The optimal treatment method of the talar osteochondral lesions (TOLs) is still controversial. Although the success of arthroscopic microfracture treatment (AMFx) in smaller lesions is known, different treatment methods are tried in larger-sized TOLs. This study aimed to compare the clinical and radiological outcomes of the single-step AMFx repair procedure and the combined application of AMFx and cell-free scaffold (CFS) in the treatment of TOLs.
Methods: This retrospective cohort study included patients presenting with a TOL larger than 1.5 cm2 and smaller than 3 cm2 between March 2015 and June 2018 who received arthroscopic treatment and attended follow-up for at least 24 months. Eighteen patients (group 1) were treated with the AMFx method, and 16 patients (group 2) with AMFx + CFS. American Orthopedic Foot and Ankle Society (AOFAS), Visual Analog Scale (VAS), and Tegner Activity Scores were used for clinical evaluation, and MOCART (magnetic resonance observation of cartilage repair tissue) score was used to assess cartilage repair tissue.
Results: The mean patient age was 33.47 (8.67) years and the mean follow-up time was 32.24 (9.33) months. There was no significant difference between the two groups in terms of age (P=0.984), body mass index (P=0.450), defect size (P=0.081) and follow-up time (P=0.484). The median AOFAS score increased from preoperative assessment until follow-up assessment at 12 months in groups 1 (P<0.001) and group 2 (P<0.001). There was no significant difference between the two groups in terms of clinical scores, or the components of the MOCART score.
Conclusion: Comparisons revealed that outcomes at the end of 24-month follow-up were similar between two groups. Therefore, TOLs appear to benefit similarly from the AMFx and AMFx + CFS techniques.

References

  • 1. Badekas T, Takvorian M, Souras N. Treatment principles for osteochondral lesions in foot and ankle. Int Orthop. 2013 Sep;37(9):1697-706. doi: 10.1007/s00264-013-2076-1. Epub 2013 Aug 28. PMID: 23982639; PMCID: PMC3764304.
  • 2. Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM. Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord. 2017 Jul 18;18(1):306. doi: 10.1186/s12891-017-1679-x. PMID: 28720091; PMCID: PMC5516391.
  • 3. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ. Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc. 2010 May;18(5):570-80. doi: 10.1007/s00167-010-1064-x. Epub 2010 Feb 12. PMID: 20151110; PMCID: PMC2855020.
  • 4. Navid DO, Myerson MS. Approach alternatives for treatment of osteochondral lesions of the talus. Foot Ankle Clin. 2002 Sep;7(3):635-49. doi: 10.1016/s1083-7515(02)00037-2. PMID: 12512414.
  • 5. Leontaritis N, Hinojosa L, Panchbhavi VK. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg Am. 2009 Feb;91(2):333-9. doi: 10.2106/JBJS.H.00584. PMID: 19181977.
  • 6. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006 Oct;22(10):1085-92. doi: 10.1016/j.arthro.2006.05.016. Erratum in: Arthroscopy. 2008 Feb;24(2):A16. PMID: 17027406.
  • 7. Gobbi A, Scotti C, Peretti GM. Scaffolding as treatment for osteochondral defects in the ankle. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, eds. Arthroscopy. Basic to Advanced. Berlin, Heidelberg: Springer-Verlag; 2016: 1003e1012. https://doi.org/10.1007/978-3-662-49376-2_83.
  • 8. Schachter AK, Chen AL, Reddy PD, Tejwani NC. Osteochondral lesions of the talus. J Am Acad Orthop Surg. 2005 May-Jun;13(3):152-8. doi: 10.5435/00124635-200505000-00002. PMID: 15938604.
  • 9. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008 Jan;24(1):106-12. doi: 10.1016/j.arthro.2007.07.022. Epub 2007 Nov 19. PMID: 18182210.
  • 10. Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, et al. A. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005 Sep;21(9):1066-75. doi: 10.1016/j.arthro.2005.06.018. PMID: 16171631.
  • 11. Khan WS, Johnson DS, Hardingham TE. The potential of stem cells in the treatment of knee cartilage defects. Knee. 2010 Dec;17(6):369-74. doi: 10.1016/j.knee.2009.12.003. Epub 2010 Jan 3. PMID: 20051319.
  • 12. Polat G, Erşen A, Erdil ME, Kızılkurt T, Kılıçoğlu Ö, Aşık M. Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc. 2016 Apr;24(4):1299-303. doi: 10.1007/s00167-016-3990-8. Epub 2016 Feb 1. PMID: 26831855.
  • 13. Cortese F, McNicholas M, Janes G, Gillogly S, Abelow SP, Gigante A, Coletti N. Arthroscopic Delivery of Matrix-Induced Autologous Chondrocyte Implant: International Experience and Technique Recommendations. Cartilage. 2012 Apr;3(2):156-64. doi: 10.1177/1947603511435271. PMID: 26069628; PMCID: PMC4297127.
  • 14. Patrascu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br. 2010 Aug;92(8):1160-3. doi: 10.1302/0301-620X.92B8.24341. PMID: 20675765. 15. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1-2):1-57. doi: 10.1615/critrevbiomedeng.v37.i1-2.10. PMID: 20201770; PMCID: PMC3146065.
  • 16. Georgiannos D, Bisbinas I, Badekas A. Osteochondral transplantation of autologous graft for the treatment of osteochondral lesions of talus: 5- to 7-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2016 Dec;24(12):3722-3729. doi: 10.1007/s00167-014-3389-3. Epub 2014 Oct 19. PMID: 25326766.
  • 17. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013 Feb;31(2):108-15. doi: 10.1016/j.tibtech.2012.12.003. Epub 2013 Jan 18. PMID: 23336996.
  • 18. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006 Jan;57(1):16-23. doi: 10.1016/j.ejrad.2005.08.007. Epub 2005 Oct 3. PMID: 16203119.
  • 19. van Dijk CN. Ankle arthroscopy. Techniques Developed by the Amsterdam Foot and Ankle School. Cham, Switzerland: Springer; 2014.
  • 20. Yasui Y, Wollstein A, Murawski CD, Kennedy JG. Operative Treatment for Osteochondral Lesions of the Talus: Biologics and Scaffold-Based Therapy. Cartilage. 2017 Jan;8(1):42-49. doi: 10.1177/1947603516644298. Epub 2016 May 9. PMID: 27994719; PMCID: PMC5154422.
  • 21. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009 Oct;37(10):1974-80. doi: 10.1177/0363546509335765. Epub 2009 Aug 4. PMID: 19654429.
  • 22. Murawski CD, Foo LF, Kennedy JG. A Review of Arthroscopic Bone Marrow Stimulation Techniques of the Talus: The Good, the Bad, and the Causes for Concern. Cartilage. 2010 Apr;1(2):137-44. doi: 10.1177/1947603510364403. PMID: 26069545; PMCID: PMC4297045.
  • 23. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008 Sep;36(9):1750-62. doi: 10.1177/0363546508316773. PMID: 18753679.
  • 24. Brouwer KM, van Rensch P, Harbers VE, Geutjes PJ, Koens MJ, Wijnen RM, Daamen WF, van Kuppevelt TH. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering. J Tissue Eng Regen Med. 2011 Jun;5(6):501-4. doi: 10.1002/term.397. Epub 2011 Feb 8. PMID: 21604385.
  • 25. Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc. 2012 Oct;20(10):1915-22. doi: 10.1007/s00167-011-1777-5. Epub 2011 Nov 18. PMID: 22095486.
  • 26. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy. 2015 Apr;31(4):767-75. doi: 10.1016/j.arthro.2014.11.017. Epub 2015 Jan 27. PMID: 25633817.
  • 27. Pot MW, Gonzales VK, Buma P, IntHout J, van Kuppevelt TH, de Vries RBM, et al. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ. 2016 Sep 8;4:e2243. doi: 10.7717/peerj.2243. PMID: 27651981; PMCID: PMC5018675.
  • 28. Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009 Oct;27(10):1353-60. doi: 10.1002/jor.20879. PMID: 19382184.
  • 29. Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res. 2012 Mar;470(3):910-9. doi: 10.1007/s11999-011-2107-4. Epub 2011 Oct 1. PMID: 21965060; PMCID: PMC3270167.
  • 30. Hegewald AA, Ringe J, Bartel J, Krüger I, Notter M, Barnewitz D, Kaps C, Sittinger M. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell. 2004 Dec;36(6):431-8. doi: 10.1016/j.tice.2004.07.003. PMID: 15533458.
  • 31. Kanatlı U, Eren A, Eren TK, Vural A, Geylan DE, Öner AY. Single-Step Arthroscopic Repair With Cell-Free Polymer-Based Scaffold in Osteochondral Lesions of the Talus: Clinical and Radiological Results. Arthroscopy. 2017 Sep;33(9):1718-1726. doi: 10.1016/j.arthro.2017.06.011. PMID: 28865575.
  • 32. Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013 Mar;41(3):519-27. doi: 10.1177/0363546513476671. Epub 2013 Feb 7. PMID: 23393079.
  • 33. Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol. 2013 Oct;68(10):1031-8. doi: 10.1016/j.crad.2013.04.016. Epub 2013 Jun 25. PMID: 23809267.
  • 34. Eren TK, Ataoğlu MB, Eren A, Geylan DE, Öner AY, Kanatlı U. Comparison of arthroscopic microfracture and cell-free scaffold implantation techniques in the treatment of talar osteochondral lesions. Eklem Hastalik Cerrahisi. 2019 Aug;30(2):97-105. doi: 10.5606/ehc.2019.64401. PMID: 31291856.
Year 2021, , 875 - 879, 01.09.2021
https://doi.org/10.28982/josam.977023

Abstract

References

  • 1. Badekas T, Takvorian M, Souras N. Treatment principles for osteochondral lesions in foot and ankle. Int Orthop. 2013 Sep;37(9):1697-706. doi: 10.1007/s00264-013-2076-1. Epub 2013 Aug 28. PMID: 23982639; PMCID: PMC3764304.
  • 2. Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM. Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord. 2017 Jul 18;18(1):306. doi: 10.1186/s12891-017-1679-x. PMID: 28720091; PMCID: PMC5516391.
  • 3. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ. Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc. 2010 May;18(5):570-80. doi: 10.1007/s00167-010-1064-x. Epub 2010 Feb 12. PMID: 20151110; PMCID: PMC2855020.
  • 4. Navid DO, Myerson MS. Approach alternatives for treatment of osteochondral lesions of the talus. Foot Ankle Clin. 2002 Sep;7(3):635-49. doi: 10.1016/s1083-7515(02)00037-2. PMID: 12512414.
  • 5. Leontaritis N, Hinojosa L, Panchbhavi VK. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg Am. 2009 Feb;91(2):333-9. doi: 10.2106/JBJS.H.00584. PMID: 19181977.
  • 6. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006 Oct;22(10):1085-92. doi: 10.1016/j.arthro.2006.05.016. Erratum in: Arthroscopy. 2008 Feb;24(2):A16. PMID: 17027406.
  • 7. Gobbi A, Scotti C, Peretti GM. Scaffolding as treatment for osteochondral defects in the ankle. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, eds. Arthroscopy. Basic to Advanced. Berlin, Heidelberg: Springer-Verlag; 2016: 1003e1012. https://doi.org/10.1007/978-3-662-49376-2_83.
  • 8. Schachter AK, Chen AL, Reddy PD, Tejwani NC. Osteochondral lesions of the talus. J Am Acad Orthop Surg. 2005 May-Jun;13(3):152-8. doi: 10.5435/00124635-200505000-00002. PMID: 15938604.
  • 9. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008 Jan;24(1):106-12. doi: 10.1016/j.arthro.2007.07.022. Epub 2007 Nov 19. PMID: 18182210.
  • 10. Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, et al. A. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005 Sep;21(9):1066-75. doi: 10.1016/j.arthro.2005.06.018. PMID: 16171631.
  • 11. Khan WS, Johnson DS, Hardingham TE. The potential of stem cells in the treatment of knee cartilage defects. Knee. 2010 Dec;17(6):369-74. doi: 10.1016/j.knee.2009.12.003. Epub 2010 Jan 3. PMID: 20051319.
  • 12. Polat G, Erşen A, Erdil ME, Kızılkurt T, Kılıçoğlu Ö, Aşık M. Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc. 2016 Apr;24(4):1299-303. doi: 10.1007/s00167-016-3990-8. Epub 2016 Feb 1. PMID: 26831855.
  • 13. Cortese F, McNicholas M, Janes G, Gillogly S, Abelow SP, Gigante A, Coletti N. Arthroscopic Delivery of Matrix-Induced Autologous Chondrocyte Implant: International Experience and Technique Recommendations. Cartilage. 2012 Apr;3(2):156-64. doi: 10.1177/1947603511435271. PMID: 26069628; PMCID: PMC4297127.
  • 14. Patrascu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br. 2010 Aug;92(8):1160-3. doi: 10.1302/0301-620X.92B8.24341. PMID: 20675765. 15. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1-2):1-57. doi: 10.1615/critrevbiomedeng.v37.i1-2.10. PMID: 20201770; PMCID: PMC3146065.
  • 16. Georgiannos D, Bisbinas I, Badekas A. Osteochondral transplantation of autologous graft for the treatment of osteochondral lesions of talus: 5- to 7-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2016 Dec;24(12):3722-3729. doi: 10.1007/s00167-014-3389-3. Epub 2014 Oct 19. PMID: 25326766.
  • 17. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013 Feb;31(2):108-15. doi: 10.1016/j.tibtech.2012.12.003. Epub 2013 Jan 18. PMID: 23336996.
  • 18. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006 Jan;57(1):16-23. doi: 10.1016/j.ejrad.2005.08.007. Epub 2005 Oct 3. PMID: 16203119.
  • 19. van Dijk CN. Ankle arthroscopy. Techniques Developed by the Amsterdam Foot and Ankle School. Cham, Switzerland: Springer; 2014.
  • 20. Yasui Y, Wollstein A, Murawski CD, Kennedy JG. Operative Treatment for Osteochondral Lesions of the Talus: Biologics and Scaffold-Based Therapy. Cartilage. 2017 Jan;8(1):42-49. doi: 10.1177/1947603516644298. Epub 2016 May 9. PMID: 27994719; PMCID: PMC5154422.
  • 21. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009 Oct;37(10):1974-80. doi: 10.1177/0363546509335765. Epub 2009 Aug 4. PMID: 19654429.
  • 22. Murawski CD, Foo LF, Kennedy JG. A Review of Arthroscopic Bone Marrow Stimulation Techniques of the Talus: The Good, the Bad, and the Causes for Concern. Cartilage. 2010 Apr;1(2):137-44. doi: 10.1177/1947603510364403. PMID: 26069545; PMCID: PMC4297045.
  • 23. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008 Sep;36(9):1750-62. doi: 10.1177/0363546508316773. PMID: 18753679.
  • 24. Brouwer KM, van Rensch P, Harbers VE, Geutjes PJ, Koens MJ, Wijnen RM, Daamen WF, van Kuppevelt TH. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering. J Tissue Eng Regen Med. 2011 Jun;5(6):501-4. doi: 10.1002/term.397. Epub 2011 Feb 8. PMID: 21604385.
  • 25. Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc. 2012 Oct;20(10):1915-22. doi: 10.1007/s00167-011-1777-5. Epub 2011 Nov 18. PMID: 22095486.
  • 26. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy. 2015 Apr;31(4):767-75. doi: 10.1016/j.arthro.2014.11.017. Epub 2015 Jan 27. PMID: 25633817.
  • 27. Pot MW, Gonzales VK, Buma P, IntHout J, van Kuppevelt TH, de Vries RBM, et al. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ. 2016 Sep 8;4:e2243. doi: 10.7717/peerj.2243. PMID: 27651981; PMCID: PMC5018675.
  • 28. Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009 Oct;27(10):1353-60. doi: 10.1002/jor.20879. PMID: 19382184.
  • 29. Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res. 2012 Mar;470(3):910-9. doi: 10.1007/s11999-011-2107-4. Epub 2011 Oct 1. PMID: 21965060; PMCID: PMC3270167.
  • 30. Hegewald AA, Ringe J, Bartel J, Krüger I, Notter M, Barnewitz D, Kaps C, Sittinger M. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell. 2004 Dec;36(6):431-8. doi: 10.1016/j.tice.2004.07.003. PMID: 15533458.
  • 31. Kanatlı U, Eren A, Eren TK, Vural A, Geylan DE, Öner AY. Single-Step Arthroscopic Repair With Cell-Free Polymer-Based Scaffold in Osteochondral Lesions of the Talus: Clinical and Radiological Results. Arthroscopy. 2017 Sep;33(9):1718-1726. doi: 10.1016/j.arthro.2017.06.011. PMID: 28865575.
  • 32. Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013 Mar;41(3):519-27. doi: 10.1177/0363546513476671. Epub 2013 Feb 7. PMID: 23393079.
  • 33. Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol. 2013 Oct;68(10):1031-8. doi: 10.1016/j.crad.2013.04.016. Epub 2013 Jun 25. PMID: 23809267.
  • 34. Eren TK, Ataoğlu MB, Eren A, Geylan DE, Öner AY, Kanatlı U. Comparison of arthroscopic microfracture and cell-free scaffold implantation techniques in the treatment of talar osteochondral lesions. Eklem Hastalik Cerrahisi. 2019 Aug;30(2):97-105. doi: 10.5606/ehc.2019.64401. PMID: 31291856.
There are 33 citations in total.

Details

Primary Language English
Subjects Orthopaedics
Journal Section Research article
Authors

Bertan Cengiz 0000-0003-1069-3990

Ramin Moradi This is me 0000-0001-7295-9964

Publication Date September 1, 2021
Published in Issue Year 2021

Cite

APA Cengiz, B., & Moradi, R. (2021). Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?. Journal of Surgery and Medicine, 5(9), 875-879. https://doi.org/10.28982/josam.977023
AMA Cengiz B, Moradi R. Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?. J Surg Med. September 2021;5(9):875-879. doi:10.28982/josam.977023
Chicago Cengiz, Bertan, and Ramin Moradi. “Arthroscopic Microfracture Alone or Combined Application of Acellular Scaffold: Which One Is More Effective in the Treatment of Osteochondral Lesions of the Talus?”. Journal of Surgery and Medicine 5, no. 9 (September 2021): 875-79. https://doi.org/10.28982/josam.977023.
EndNote Cengiz B, Moradi R (September 1, 2021) Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?. Journal of Surgery and Medicine 5 9 875–879.
IEEE B. Cengiz and R. Moradi, “Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?”, J Surg Med, vol. 5, no. 9, pp. 875–879, 2021, doi: 10.28982/josam.977023.
ISNAD Cengiz, Bertan - Moradi, Ramin. “Arthroscopic Microfracture Alone or Combined Application of Acellular Scaffold: Which One Is More Effective in the Treatment of Osteochondral Lesions of the Talus?”. Journal of Surgery and Medicine 5/9 (September 2021), 875-879. https://doi.org/10.28982/josam.977023.
JAMA Cengiz B, Moradi R. Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?. J Surg Med. 2021;5:875–879.
MLA Cengiz, Bertan and Ramin Moradi. “Arthroscopic Microfracture Alone or Combined Application of Acellular Scaffold: Which One Is More Effective in the Treatment of Osteochondral Lesions of the Talus?”. Journal of Surgery and Medicine, vol. 5, no. 9, 2021, pp. 875-9, doi:10.28982/josam.977023.
Vancouver Cengiz B, Moradi R. Arthroscopic microfracture alone or combined application of acellular scaffold: Which one is more effective in the treatment of osteochondral lesions of the talus?. J Surg Med. 2021;5(9):875-9.