Review
BibTex RIS Cite

Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry

Year 2023, , 549 - 576, 31.05.2023
https://doi.org/10.18596/jotcsa.1188983

Abstract

Unfortunately, many toxic solvents are used in chemistry laboratories and in the manufacturing of materials, which poses a serious risk to process safety, the natural environment, and human health. In this review, different tools for solvent-free organic reactions have been surveyed as an approach for green chemistry, where many of the solvents are known to upset our ecosystems so an enormous research effort has been exerted during the last decade to avoid the utilization of hazardous solvents and the number of publications on solvent-free reactions has increased nearly exponentially. Obviously, this reflects the great interest in solventless reactions. In our survey, we will highlight the solvent-free organic reaction as an approach for green chemistry to cover work published up to nearly 2022.

Thanks

The authors acknowledge and express their thanks, appreciation, and sincere gratitude to all staff members at the Department of Green Chemistry, the National Research Centre, and the laboratories and research sector of the Greater Cairo Water Company for their cooperation.

References

  • 1. AQUINO T de, ZENKNER FF, ELLWANGER JH, PRÁ D, RIEGER A. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents. An Acad Bras Cienc. 2016;88(1):227-236. doi:10.1590/0001-3765201620150194
  • 2. Niaz K, Bahadar H, Maqbool F, Abdollahi M. A review of environmental and occupational exposure to xylene and its health concerns. EXCLI J. 2015;14:1167.
  • 3. Tong R, Zhang L, Yang X, Liu J, Zhou P, Li J. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. J Clean Prod. 2019;208:1096-1108. doi:10.1016/j.jclepro.2018.10.195
  • 4. Ou R, Chang C, Zeng Y, et al. Emission characteristics and ozone formation potentials of VOCs from ultra-low-emission waterborne automotive painting. Chemosphere. 2022;305:135469.
  • 5. Zhang X, Zhao W, Nie L, et al. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environmental Pollution. 2021;268:115868. doi:10.1016/j.envpol.2020.115868
  • 6. Vaudreuil MA, Vo Duy S, Munoz G, Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Science of The Total Environment. 2022;846:157353. doi:10.1016/j.scitotenv.2022.157353
  • 7. Kuzmina O, Hartrick E, Marchant A, Edwards E, Brandt JR, Hoyle S. Chemical Management: Storage and Inventory in Research Laboratories. ACS Chemical Health & Safety. 2022;29(1):62-71.
  • 8. M. Hassan A, Heakal B, Said A, Aboulthana W, Abdelmoaz M. Comparative study for synthesis of novel Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Zr (IV)complexes under conventional methods and microwave irradiation and evaluation of their antimicrobial and Anticancer activity. Egypt J Chem. 2020;0(0):0-0. doi:10.21608/ejchem.2020.21048.2255
  • 9. Zangade S, Patil P. A Review on Solvent-free Methods in Organic Synthesis. Curr Org Chem. 2020;23(21):2295-2318. doi:10.2174/1385272823666191016165532
  • 10. Sahoo BM, Banik BK. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; 2020:523-548. doi:10.1016/B978-0-12-817592-7.00014-9
  • 11. Rothenberg G, Downie AP, Raston CL, Scott JL. Understanding Solid/Solid Organic Reactions. J Am Chem Soc. 2001;123(36):8701-8708. doi:10.1021/ja0034388
  • 12. ben Othman A, Ayari F, Abidi R, Trabelsi Ayadi M. Hybrid nanocomposite by solid-solid reaction. Desalination Water Treat. 2019;152:185-196. doi:10.5004/dwt.2019.23317
  • 13. Hassan AM, Heakal BH, Younis A, Abdelmoaz MA, Abdrabou MM. Conventional and Microwave-Assisted Synthesis, Antimicrobial and Antitumor Studies of Tridentate Schiff Base Derived from O-vanillin and Phenyl Urea and its Complexes. Advanced Journal of Chemistry-Section A. 2020;3(5):621-638.
  • 14. Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS Omega. 2022;7(36):32418-32431. doi:10.1021/acsomega.2c03911
  • 15. Karmakar R, Mukhopadhyay C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; 2021:497-562. doi:10.1016/B978-0-12-820586-0.00014-5
  • 16. Akbaşlar D, Demirkol O, Giray S. Paal–Knorr Pyrrole Synthesis in Water. Synth Commun. 2014;44(9):1323-1332. doi:10.1080/00397911.2013.857691
  • 17. Simon MO, Li CJ. Green chemistry oriented organic synthesis in water. Chem Soc Rev. 2012;41(4):1415-1427.
  • 18. Faisal M. Water in Organic Synthesis as a Green Solvent. Industrial Applications of Green Solvents: Volume I. 2019;50:61-106.
  • 19. Jessop PG. Switchable solvents as media for synthesis and separations. Aldrichimica Acta. 2015;48(1):18-21.
  • 20. Lawley MD, Boon D, Stein LY, Sauvageau D. Switchable Solvents for the Reversible Dissolution of Poly(3-hydroxybutyrate). ACS Sustain Chem Eng. 2022;10(8):2602-2608. doi:10.1021/acssuschemeng.1c06377
  • 21. Wolfs J, Nickisch R, Wanner L, Meier MAR. Sustainable One-Pot Cellulose Dissolution and Derivatization via a Tandem Reaction in the DMSO/DBU/CO 2 Switchable Solvent System. J Am Chem Soc. 2021;143(44):18693-18702. doi:10.1021/jacs.1c08783
  • 22. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436(7054):1102.
  • 23. Mercer SM, Jessop PG. “Switchable water”: aqueous solutions of switchable ionic strength. ChemSusChem: Chemistry & Sustainability Energy & Materials. 2010;3(4):467-470.
  • 24. Phan L, Chiu D, Heldebrant DJ, et al. Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res. 2008;47(3):539-545.
  • 25. Lopez-Periago AM, Portoles-Gil N, López-Domínguez P, et al. Metal–organic frameworks precipitated by reactive crystallization in supercritical CO2. Cryst Growth Des. 2017;17(5):2864-2872.
  • 26. Fedyaeva ON, Vostrikov AA, Shishkin A v, Dubov DY. Conjugated processes of black liquor mineral and organic components conversion in supercritical water. J Supercrit Fluids. 2019;143:191-197.
  • 27. Wei N, Xu D, Hao B, Guo S, Guo Y, Wang S. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res. 2021;190:116634.
  • 28. Chen J, Wang Q, Xu Z, et al. Process in supercritical water gasification of coal: A review of fundamentals, mechanisms, catalysts and element transformation. Energy Convers Manag. 2021;237:114122.
  • 29. Yang GP, Wu X, Yu B, Hu CW. Ionic liquid from vitamin B1 analogue and heteropolyacid: a recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. ACS Sustain Chem Eng. 2019;7(4):3727-3732.
  • 30. Vekariya RL. A review of ionic liquids: Applications towards catalytic organic transformations. J Mol Liq. 2017;227:44-60.
  • 31. Gaikwad DS, Undale KA, Patil DB, Pore DM. Multi-functionalized ionic liquid with in situ-generated palladium nanoparticles for Suzuki, Heck coupling reaction: a comparison with deep eutectic solvents. Journal of the Iranian Chemical Society. 2019;16(2):253-261.
  • 32. Pei Y, Zhang Y, Ma J, Fan M, Zhang S, Wang J. Ionic liquids for advanced materials. Mater Today Nano. 2022;17:100159.
  • 33. de Jesus SS, Maciel Filho R. Are ionic liquids eco-friendly? Renewable and Sustainable Energy Reviews. 2022;157:112039.
  • 34. Curreri AM, Mitragotri S, Tanner EEL. Recent advances in ionic liquids in biomedicine. Advanced Science. 2021;8(17):2004819.
  • 35. Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq. 2016;215:345-386.
  • 36. Yu FL, Gu YL, Gao X, Liu QC, Xie CX, Yu ST. Alkylation of isobutane and isobutene catalyzed by trifluoromethanesulfonic acid-taurine deep eutectic solvents in polyethylene glycol. Chemical Communications. 2019;55(33):4833-4836.
  • 37. Marset X, Torregrosa-Crespo J, Martínez-Espinosa RM, Guillena G, Ramón DJ. Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds and sodium metabisulfite in deep eutectic solvents. Green Chemistry. 2019;21(15):4127-4132.
  • 38. el Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19(4):3397-3408.
  • 39. Cao J, Su E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. J Clean Prod. 2021;314:127965.
  • 40. Shen T, Zhou S, Ruan J, et al. Recent advances on micellar catalysis in water. Adv Colloid Interface Sci. 2021;287:102299.
  • 41. Bose AL, Bhattacharjee D, Goswami D. Mixed micelles and bicontinuous microemulsions: Promising media for enzymatic reactions. Colloids Surf B Biointerfaces. 2022;209:112193.
  • 42. Abdel Hameed R, Abd el-kader MF, Qureshi M, al Elaimi M, Farghaly O. Green Synthesis for Nonionic Surfactants from Poly(etheleneterphthalate) Plastic Waste. Egypt J Chem. 2020;0(0):0-0. doi:10.21608/ejchem.2020.45554.2928
  • 43. Clark JH, Macquarrie DJ. Handbook of Green Chemistry and Technology. John Wiley & Sons; 2008.
  • 44. Mukherjee N, Maity P, Ranu BC. Use of ball milling for the synthesis of biologically active heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; 2021:167-187. doi:10.1016/B978-0-12-820586-0.00007-8
  • 45. Zhang P, Li S, Guo P, Zhang C. Seed-Assisted, OSDA-Free, Solvent-Free Synthesis of ZSM-5 Zeolite from Iron Ore Tailings. Waste Biomass Valorization. 2020;11(8):4381-4391. doi:10.1007/s12649-019-00752-4
  • 46. Yoo K, Hong EJ, Huynh TQ, Kim BS, Kim JG. Mechanochemical Regulation of Unstable Acyl Azide: Ir (III)-Catalyzed Nitrene Transfer C–H Amidation under Solvent-Free Ball Milling Conditions. ACS Sustain Chem Eng. 2021;9(26):8679-8685.
  • 47. Hassan A, Heakal BH, Khamis H, et al. Design, Synthesis, DFT Studies and Anticancer Activity of Novel Metal Complexes Containing 1, 3, 5-triazino [1, 2-a] benzimidazole Moiety Using Microwave as an Approach for Green Chemistry. Egypt J Chem. 2021;64(1):323-340.
  • 48. Younis A, Awad G. Utilization of Ultrasonic as an Approach of Green Chemistry for Synthesis of Hydrazones and Bishydrazones as Potential Antimicrobial Agents. Egypt J Chem. 2019;0(0):0-0. doi:10.21608/ejchem.2019.13440.1833
  • 49. Zhao W, Liu M, Shen C, et al. Biosynthesis of plant-specific alkaloids tetrahydroprotoberberines in engineered Escherichia coli. Green Chemistry. 2021;23(16):5944-5955.
  • 50. Jin X, Zhang W, Wang Y, et al. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chemistry. 2021;23(12):4365-4374.
  • 51. Zhou X, Ji H, Hu GH, Wang R, Zhang L. A solvent-less green synthetic route toward a sustainable bio-based elastomer: design, synthesis, and characterization of poly(dibutyl itaconate- co -butadiene). Polym Chem. 2019;10(45):6131-6144. doi:10.1039/C9PY01393H
  • 52. El-Sayed T, Aboelnaga A, El-Atawy M, Hagar M. Ball Milling Promoted N-Heterocycles Synthesis. Molecules. 2018;23(6):1348. doi:10.3390/molecules23061348
  • 53. Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS. A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry.’ Tetrahedron Lett. 2004;45(45):8351-8353.
  • 54. Ghahremanzadeh R, Ahadi S, Shakibaei GI, Bazgir A. Grindstone chemistry: one-pot synthesis of spiro [diindenopyridine-indoline] triones and spiro [acenaphthylene-diindenopyridine] triones. Tetrahedron Lett. 2010;51(3):499-502.
  • 55. Saikia L, Baruah JM, Thakur AJ. A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry. Org Med Chem Lett. 2011;1(1):1-6.
  • 56. Patel DS, Avalani JR, Raval DK. One-pot solvent-free rapid and green synthesis of 3, 4-dihydropyrano [c] chromenes using grindstone chemistry. Journal of Saudi Chemical Society. 2016;20:S401-S405.
  • 57. Sheldon RA. Green solvents for sustainable organic synthesis: state of the art. Green Chemistry. 2005;7(5):267-278.
  • 58. Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev. 2007;107(6):2503-2545.
  • 59. Abdel-Aziem A, Rashdan HRM, Mohamed Ahmed E, Shabaan SN. Synthesis and cytotoxic activity of some novel benzocoumarin derivatives under solvent free conditions. Green Chem Lett Rev. 2019;12(1):9-18.
  • 60. Andreosso I, Papagni A, Vaghi L. Mechanochemical oxidation of fluorinated anilines to symmetric azobenzenes. J Fluor Chem. 2018;216:124-127.
  • 61. Thangamani A. Grindstone chemistry: an efficient and green synthesis of 2-amino-4H-benzo [b] pyrans. Journal of Applied and Advanced Research. 2017;2(2):78-85.
  • 62. Howard JL, Sagatov Y, Browne DL. Mechanochemical electrophilic fluorination of liquid beta-ketoesters. Tetrahedron. 2018;74(25):3118-3123.
  • 63. Kaupp G, Naimi-Jamal MR, Schmeyers J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron. 2003;59(21):3753-3760.
  • 64. Tella AC, Eke UB, Owalude SO. Solvent-free mechanochemical synthesis and X-ray studies of Cu (II) and Ni (II) complexes of 5-(3, 4, 5-Trimethoxybenzyl) pyrimidine-2, 4-diamine (Trimethoprim) in a ball-mill. Journal of Saudi Chemical Society. 2016;20:S376-S381.
  • 65. Mazimba O. Antimicrobial activities of heterocycles derived from thienylchalcones. Journal of King Saud University-Science. 2015;27(1):42-48.
  • 66. Owens AR, Saunders GC, Thomas HP, Wehr-Candler TT. Solvent-free mechanochemical syntheses and reactions of π–π stacked arene–perfluoroarene co-crystals. J Fluor Chem. 2015;175:139-144.
  • 67. Sayed AR, Gomha SM, Abd El-lateef HM, Abolibda TZ. L-proline catalyzed green synthesis and anticancer evaluation of novel bioactive benzil bis-hydrazones under grinding technique. Green Chem Lett Rev. 2021;14(2):180-189. doi:10.1080/17518253.2021.1893392
  • 68. Zhang P, Liu C, Yu L, Hou H, Sun W, Ke F. Synthesis of benzimidazole by mortar–pestle grinding method. Green Chem Lett Rev. 2021;14(4):612-619. doi:10.1080/17518253.2021.1991483
  • 69. Yoo K, Hong EJ, Huynh TQ, Kim BS, Kim JG. Mechanochemical Regulation of Unstable Acyl Azide: Ir(III)-Catalyzed Nitrene Transfer C–H Amidation under Solvent-Free Ball Milling Conditions. ACS Sustain Chem Eng. 2021;9(26):8679-8685. doi:10.1021/acssuschemeng.1c01786
  • 70. Zeng JC, Xu H, Yu F, Zhang Z. Manganese (III) acetate mediated synthesis of polysubstituted pyrroles under solvent-free ball milling. Tetrahedron Lett. 2017;58(7):674-678. doi:10.1016/j.tetlet.2017.01.016
  • 71. Martínez A v, Invernizzi F, Leal-Duaso A, Mayoral JA, García JI. Microwave-promoted solventless Mizoroki–Heck reactions catalysed by Pd nanoparticles supported on laponite clay. RSC Adv. 2015;5(14):10102-10109.
  • 72. Princival C, Santos AA dos, Comasseto J v. Solventless and mild procedure to prepare organotellurium (IV) compounds under microwave irradiation. J Braz Chem Soc. 2015;26:832-836.
  • 73. Taher A, Nandi D, Islam RU, Choudhary M, Mallick K. Microwave assisted azide–alkyne cycloaddition reaction using polymer supported Cu (I) as a catalytic species: a solventless approach. RSC Adv. 2015;5(59):47275-47283.
  • 74. Keshwal BS, Rajguru D, Acharya AD, Jain S. Microwave-Assisted Solventless Synthesis of 3, 5-Diaryl-2, 6-dicyanoanilines. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2016;86(1):1-5.
  • 75. Rout L, Kumar A, Chand PK, Achary LSK, Dash P. Microwave‐Assisted Efficient One‐Pot Multi‐Component Synthesis of Octahydroquinazolinone Derivatives Catalyzed by Cu@ Ag Core‐Shell Nanoparticle. ChemistrySelect. 2019;4(19):5696-5706.
  • 76. Nain S, Singh R, Ravichandran S. Importance of Microwave Heating In Organic Synthesis. Advanced Journal of Chemistry-Section A. Published online January 30, 2019:94-104. doi:10.29088/SAMI/AJCA.2019.2.94104
  • 77. Zarie E, WAHDAN K, Wahba A, Heakal BH, Said A, Elbialy Z. Antimicrobial and antioxidant evaluation of newly synthesized nanomaterials of potential anticorrosion properties based on Co (II), Ni (II), Cu (II) and Zn (II) nano complexes of N-(p-methyl phenyl)-N-Benzoyl thiourea. Egypt J Chem. 2022;0(0):0-0. doi:10.21608/ejchem.2022.145699.6346
  • 78. Nüchter M, Ondruschka B, Bonrath W, Gum A. Microwave assisted synthesis–a critical technology overview. Green chemistry. 2004;6(3):128-141.
  • 79. Jha A. Microwave Assisted Synthesis of Organic Compounds and Nanomaterials. In: Nanofibers - Synthesis, Properties and Applications. IntechOpen; 2021. doi:10.5772/intechopen.98224
  • 80. Merillas B, Cuéllar E, Diez-Varga A, et al. Whole microwave syntheses of pyridylpyrazole and of Re and Ru luminescent pyridylpyrazole complexes. Inorganica Chim Acta. 2019;484:1-7.
  • 81. Moreno-Fuquen R, Arango-Daraviña K, Becerra D, Castillo JC, Kennedy AR, Macías MA. Catalyst-and solvent-free synthesis of 2-fluoro-N-(3-methylsulfanyl-1H-1, 2, 4-triazol-5-yl) benzamide through a microwave-assisted Fries rearrangement: X-ray structural and theoretical studies. Acta Crystallogr C Struct Chem. 2019;75(3):359-371.
  • 82. Kaur P, Kumar B, Kumar V, Kumar R. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction. Tetrahedron Lett. 2018;59(21):1986-1991.
  • 83. Baran NY. Fabrication and characterization of a novel easy recoverable and reusable Oligoazomethine-Pd (II) catalyst for Suzuki cross-coupling reactions. J Mol Struct. 2019;1176:266-274.
  • 84. Khurana JM, Lumb A, Pandey A, Magoo D. Green approaches for the synthesis of 12-aryl-8, 9, 10, 12-tetrahydrobenzo [a] xanthen-11-ones in aqueous media and under microwave irradiation in solventless conditions. Synth Commun. 2012;42(12):1796-1803.
  • 85. Bandyopadhyay D, Maldonado S, Banik BK. A microwave-assisted bismuth nitrate-catalyzed unique route toward 1, 4-dihydropyridines. Molecules. 2012;17(3):2643-2662.
  • 86. Zhang H, Jiang L. Microwave-assisted solvent-free synthesis of imidazo [1, 2-a] pyridines via a three-component reaction. Tetrahedron Lett. 2015;56(21):2777-2779.
  • 87. Cáceres-Castillo D, Carballo RM, Tzec-Interián JA, Mena-Rejón GJ. Solvent-free synthesis of 2-amino-4-arylthiazoles under microwave irradiation. Tetrahedron Lett. 2012;53(30):3934-3936.
  • 88. Liu Q, Pan N, Xu J, Zhang W, Kong F. Microwave-assisted and iodine-catalyzed synthesis of dihydropyrimidin-2-thiones via biginelli reaction under solvent-free conditions. Synth Commun. 2013;43(1):139-146.
  • 89. Fiorito S, Genovese S, Taddeo VA, Epifano F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett. 2015;56(19):2434-2436.
  • 90. Tran PH, Hansen PE, Nguyen HT, Le TN. Erbium trifluoromethanesulfonate catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation. Tetrahedron Lett. 2015;56(4):612-618.
  • 91. Zhang D, Zhang Y, Zhao T, Li J, Hou Y, Gu Q. A rapid and efficient solvent-free microwave-assisted synthesis of pyrazolone derivatives containing substituted isoxazole ring. Tetrahedron. 2016;72(22):2979-2987.
  • 92. Sharma S, Sharma K, Ojha R, et al. Microwave assisted synthesis of naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2014;24(2):495-500.
  • 93. Reddy MV, Kumar BS, Lim KT, Cho BG, Jeong YT. Microwave-promoted efficient synthesis of pyrano [3, 2-c] chromen-5 (4H)-ones under catalyst and solvent-free conditions. Tetrahedron Lett. 2016;57(4):476-478.
  • 94. Satyanarayana S, Kumar KP, Reddy PL, Narender R, Narasimhulu G, Reddy BVS. Microwave-assisted cyclocondensation: a rapid and solvent-free synthesis of 3-benzyl-2H-pyrido [1, 2-a] pyrimidin-2-one derivatives. Tetrahedron Lett. 2013;54(36):4892-4895.
  • 95. Sarmah MM, Sarma R, Prajapati D, Hu W. Efficient synthesis of dihydropyrido [4, 3-d] pyrimidines by microwave-promoted three-component aza-Diels–Alder reaction. Tetrahedron Lett. 2013;54(3):267-271.
  • 96. Vaddula BR, Varma RS, Leazer J. Mixing with microwaves: Solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett. 2013;54(12):1538-1541.
  • 97. Zhang LP, Shang XB, Wu QF, Zhang Y, Li JP. Highly Efficient Method for the Synthesis of 1, 4-Phenylenedithioureas Under Solvent- and Catalyst-Free Conditions Promoted by Microwave Irridiation. Synth Commun. 2012;42(7):1045-1052.
  • 98. Das S, Santra S, Roy A, Urinda S, Majee A, Hajra A. One-pot multicomponent synthesis of polyhydroquinolines under catalyst and solvent-free conditions. Green Chem Lett Rev. 2012;5(1):97-100.
  • 99. Yin G, Liu Q, Ma J, She N. Solvent-and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chemistry. 2012;14(6):1796-1798.
  • 100. Sarma R, Sarmah MM, Prajapati D. Microwave-promoted catalyst-and solvent-free aza-Diels–Alder reaction of aldimines with 6-[2-(dimethylamino) vinyl]-1, 3-dimethyluracil. J Org Chem. 2012;77(4):2018-2023.
  • 101. D. D, L. Gaonkar S, S. Shetty N kumar. SYNTHESIS OF THIOESTERS AND THIOAMIDES USING POTASSIUM THIOCYANATE UNDER MICROWAVE IRRADIATION. Rasayan Journal of Chemistry. 2022;15(01):288-291. doi:10.31788/RJC.2022.1516614
  • 102. Kulkarni P. An efficient solvent-free synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using microwave irradiation. Journal of the Indian Chemical Society. 2021;98(1):100013. doi:10.1016/j.jics.2021.100013
  • 103. Rao DJ, Nagaraju K, Maddila S. Microwave irradiated mild, rapid, one-pot and multi-component synthesis of isoxazole-5(4H)-ones. Chemical Data Collections. 2021;32:100669. doi:10.1016/j.cdc.2021.100669
  • 104. Kumar H, Parmar A. Ultrasound promoted ZrCl4 catalyzed rapid synthesis of substituted 1, 2, 3, 4-tetrahydropyrimidine-2-ones in solvent or dry media. Ultrason Sonochem. 2008;15(2):129-132.
  • 105. Upadhyaya DJ, Barge A, Stefania R, Cravotto G. Efficient, solventless N-Boc protection of amines carried out at room temperature using sulfamic acid as recyclable catalyst. Tetrahedron Lett. 2007;48(47):8318-8322.
  • 106. He JY, Xin HX, Yan H, Song XQ, Zhong RG. Convenient ultrasound-mediated synthesis of 1, 4-diazabutadienes under solvent-free conditions. Ultrason Sonochem. 2011;18(1):466-469.
  • 107. Chtourou M, Abdelhédi R, Frikha MH, Trabelsi M. Solvent free synthesis of 1, 3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation. Ultrason Sonochem. 2010;17(1):246-249.
  • 108. Perozo-Rondón E, Martín-Aranda RM, Casal B, et al. Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites. Catal Today. 2006;114(2-3):183-187.
  • 109. Estager J, Leveque JM, Cravotto G, Boffa L, Bonrath W, Draye M. One-pot and solventless synthesis of ionic liquids under ultrasonic irradiation. Synlett. 2007;2007(13):2065-2068.
  • 110. Puri S, Parmar A, Chopra HK. Ultrasound assisted reactions. In: Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier; 2021:177-246. doi:10.1016/B978-0-12-821938-6.00006-2
  • 111. Szabados M, Sipos P, Pálinkó I. Application of sonochemical activation in synthetic organic chemistry. In: Nontraditional Activation Methods in Green and Sustainable Applications. Elsevier; 2021:137-170. doi:10.1016/B978-0-12-819009-8.00007-4
  • 112. Faisal M. Sonochemical protocol for solvent-free organic synthesis. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier; 2020:113-139. doi:10.1016/B978-0-12-819540-6.00005-X
  • 113. Khumraksa B, Phakhodee W, Pattarawarapan M. Ultrasound-assisted solventless synthesis of amines by in situ oxidation/reductive amination of benzyl halides. RSC Adv. 2014;4(39):20454-20458.
  • 114. Achary LSK, Nayak PS, Barik B, Kumar A, Dash P. Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via Mannich reaction. Catal Today. 2020;348:137-147.
  • 115. Naeimi A, Honarmand M, Sedri A. Ultrasonic assisted fabrication of first MoO3/copper complex bio-nanocomposite based on Sesbania sesban plant for green oxidation of alcohols. Ultrason Sonochem. 2019;50:331-338.
  • 116. Jasim SA, Tanjung FA, Sharma S, Mahmoud MZ, Kadhim SB, Kazemnejadi M. Ultrasound and microwave irradiated sustainable synthesis of 5- and 1-substituted tetrazoles in TAIm[I] ionic liquid. Research on Chemical Intermediates. 2022;48(8):3547-3566. doi:10.1007/s11164-022-04756-z
  • 117. Kerton FM, Marriott R. Alternative Solvents for Green Chemistry. Royal Society of chemistry; 2013.
  • 118. Avila-Ortiz CG, Juaristi E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules. 2020;25(16):3579.
  • 119. Obst M, König B. Organic synthesis without conventional solvents. European J Org Chem. 2018;2018(31):4213-4232.
  • 120. Cintas P, Tabasso S, Veselov V v, Cravotto G. Alternative reaction conditions: Enabling technologies in solvent-free protocols. Curr Opin Green Sustain Chem. 2020;21:44-49.
  • 121. Nagendrappa G. Organic synthesis under solvent-free condition: An environmentally benign procedure—I. Resonance. 2002;7(10):59-68.
  • 122. Ohkubo K, Hirose K, Fukuzumi S. Solvent-Free One-Step Photochemical Hydroxylation of Benzene Derivatives by the Singlet Excited State of 2,3-Dichloro-5,6-dicyano- p -benzoquinone Acting as a Super Oxidant. Chemistry - A European Journal. 2015;21(7):2855-2861. doi:10.1002/chem.201404810
  • 123. Nazeef M, Shivhare KN, Ali S, et al. Visible-light-promoted C N and C S bonds formation: A catalyst and solvent-free photochemical approach for the synthesis of 1,3-thiazolidin-4-ones. J Photochem Photobiol A Chem. 2020;390:112347. doi:10.1016/j.jphotochem.2019.112347
Year 2023, , 549 - 576, 31.05.2023
https://doi.org/10.18596/jotcsa.1188983

Abstract

References

  • 1. AQUINO T de, ZENKNER FF, ELLWANGER JH, PRÁ D, RIEGER A. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents. An Acad Bras Cienc. 2016;88(1):227-236. doi:10.1590/0001-3765201620150194
  • 2. Niaz K, Bahadar H, Maqbool F, Abdollahi M. A review of environmental and occupational exposure to xylene and its health concerns. EXCLI J. 2015;14:1167.
  • 3. Tong R, Zhang L, Yang X, Liu J, Zhou P, Li J. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. J Clean Prod. 2019;208:1096-1108. doi:10.1016/j.jclepro.2018.10.195
  • 4. Ou R, Chang C, Zeng Y, et al. Emission characteristics and ozone formation potentials of VOCs from ultra-low-emission waterborne automotive painting. Chemosphere. 2022;305:135469.
  • 5. Zhang X, Zhao W, Nie L, et al. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environmental Pollution. 2021;268:115868. doi:10.1016/j.envpol.2020.115868
  • 6. Vaudreuil MA, Vo Duy S, Munoz G, Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Science of The Total Environment. 2022;846:157353. doi:10.1016/j.scitotenv.2022.157353
  • 7. Kuzmina O, Hartrick E, Marchant A, Edwards E, Brandt JR, Hoyle S. Chemical Management: Storage and Inventory in Research Laboratories. ACS Chemical Health & Safety. 2022;29(1):62-71.
  • 8. M. Hassan A, Heakal B, Said A, Aboulthana W, Abdelmoaz M. Comparative study for synthesis of novel Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Zr (IV)complexes under conventional methods and microwave irradiation and evaluation of their antimicrobial and Anticancer activity. Egypt J Chem. 2020;0(0):0-0. doi:10.21608/ejchem.2020.21048.2255
  • 9. Zangade S, Patil P. A Review on Solvent-free Methods in Organic Synthesis. Curr Org Chem. 2020;23(21):2295-2318. doi:10.2174/1385272823666191016165532
  • 10. Sahoo BM, Banik BK. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; 2020:523-548. doi:10.1016/B978-0-12-817592-7.00014-9
  • 11. Rothenberg G, Downie AP, Raston CL, Scott JL. Understanding Solid/Solid Organic Reactions. J Am Chem Soc. 2001;123(36):8701-8708. doi:10.1021/ja0034388
  • 12. ben Othman A, Ayari F, Abidi R, Trabelsi Ayadi M. Hybrid nanocomposite by solid-solid reaction. Desalination Water Treat. 2019;152:185-196. doi:10.5004/dwt.2019.23317
  • 13. Hassan AM, Heakal BH, Younis A, Abdelmoaz MA, Abdrabou MM. Conventional and Microwave-Assisted Synthesis, Antimicrobial and Antitumor Studies of Tridentate Schiff Base Derived from O-vanillin and Phenyl Urea and its Complexes. Advanced Journal of Chemistry-Section A. 2020;3(5):621-638.
  • 14. Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS Omega. 2022;7(36):32418-32431. doi:10.1021/acsomega.2c03911
  • 15. Karmakar R, Mukhopadhyay C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; 2021:497-562. doi:10.1016/B978-0-12-820586-0.00014-5
  • 16. Akbaşlar D, Demirkol O, Giray S. Paal–Knorr Pyrrole Synthesis in Water. Synth Commun. 2014;44(9):1323-1332. doi:10.1080/00397911.2013.857691
  • 17. Simon MO, Li CJ. Green chemistry oriented organic synthesis in water. Chem Soc Rev. 2012;41(4):1415-1427.
  • 18. Faisal M. Water in Organic Synthesis as a Green Solvent. Industrial Applications of Green Solvents: Volume I. 2019;50:61-106.
  • 19. Jessop PG. Switchable solvents as media for synthesis and separations. Aldrichimica Acta. 2015;48(1):18-21.
  • 20. Lawley MD, Boon D, Stein LY, Sauvageau D. Switchable Solvents for the Reversible Dissolution of Poly(3-hydroxybutyrate). ACS Sustain Chem Eng. 2022;10(8):2602-2608. doi:10.1021/acssuschemeng.1c06377
  • 21. Wolfs J, Nickisch R, Wanner L, Meier MAR. Sustainable One-Pot Cellulose Dissolution and Derivatization via a Tandem Reaction in the DMSO/DBU/CO 2 Switchable Solvent System. J Am Chem Soc. 2021;143(44):18693-18702. doi:10.1021/jacs.1c08783
  • 22. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436(7054):1102.
  • 23. Mercer SM, Jessop PG. “Switchable water”: aqueous solutions of switchable ionic strength. ChemSusChem: Chemistry & Sustainability Energy & Materials. 2010;3(4):467-470.
  • 24. Phan L, Chiu D, Heldebrant DJ, et al. Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res. 2008;47(3):539-545.
  • 25. Lopez-Periago AM, Portoles-Gil N, López-Domínguez P, et al. Metal–organic frameworks precipitated by reactive crystallization in supercritical CO2. Cryst Growth Des. 2017;17(5):2864-2872.
  • 26. Fedyaeva ON, Vostrikov AA, Shishkin A v, Dubov DY. Conjugated processes of black liquor mineral and organic components conversion in supercritical water. J Supercrit Fluids. 2019;143:191-197.
  • 27. Wei N, Xu D, Hao B, Guo S, Guo Y, Wang S. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res. 2021;190:116634.
  • 28. Chen J, Wang Q, Xu Z, et al. Process in supercritical water gasification of coal: A review of fundamentals, mechanisms, catalysts and element transformation. Energy Convers Manag. 2021;237:114122.
  • 29. Yang GP, Wu X, Yu B, Hu CW. Ionic liquid from vitamin B1 analogue and heteropolyacid: a recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. ACS Sustain Chem Eng. 2019;7(4):3727-3732.
  • 30. Vekariya RL. A review of ionic liquids: Applications towards catalytic organic transformations. J Mol Liq. 2017;227:44-60.
  • 31. Gaikwad DS, Undale KA, Patil DB, Pore DM. Multi-functionalized ionic liquid with in situ-generated palladium nanoparticles for Suzuki, Heck coupling reaction: a comparison with deep eutectic solvents. Journal of the Iranian Chemical Society. 2019;16(2):253-261.
  • 32. Pei Y, Zhang Y, Ma J, Fan M, Zhang S, Wang J. Ionic liquids for advanced materials. Mater Today Nano. 2022;17:100159.
  • 33. de Jesus SS, Maciel Filho R. Are ionic liquids eco-friendly? Renewable and Sustainable Energy Reviews. 2022;157:112039.
  • 34. Curreri AM, Mitragotri S, Tanner EEL. Recent advances in ionic liquids in biomedicine. Advanced Science. 2021;8(17):2004819.
  • 35. Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq. 2016;215:345-386.
  • 36. Yu FL, Gu YL, Gao X, Liu QC, Xie CX, Yu ST. Alkylation of isobutane and isobutene catalyzed by trifluoromethanesulfonic acid-taurine deep eutectic solvents in polyethylene glycol. Chemical Communications. 2019;55(33):4833-4836.
  • 37. Marset X, Torregrosa-Crespo J, Martínez-Espinosa RM, Guillena G, Ramón DJ. Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds and sodium metabisulfite in deep eutectic solvents. Green Chemistry. 2019;21(15):4127-4132.
  • 38. el Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19(4):3397-3408.
  • 39. Cao J, Su E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. J Clean Prod. 2021;314:127965.
  • 40. Shen T, Zhou S, Ruan J, et al. Recent advances on micellar catalysis in water. Adv Colloid Interface Sci. 2021;287:102299.
  • 41. Bose AL, Bhattacharjee D, Goswami D. Mixed micelles and bicontinuous microemulsions: Promising media for enzymatic reactions. Colloids Surf B Biointerfaces. 2022;209:112193.
  • 42. Abdel Hameed R, Abd el-kader MF, Qureshi M, al Elaimi M, Farghaly O. Green Synthesis for Nonionic Surfactants from Poly(etheleneterphthalate) Plastic Waste. Egypt J Chem. 2020;0(0):0-0. doi:10.21608/ejchem.2020.45554.2928
  • 43. Clark JH, Macquarrie DJ. Handbook of Green Chemistry and Technology. John Wiley & Sons; 2008.
  • 44. Mukherjee N, Maity P, Ranu BC. Use of ball milling for the synthesis of biologically active heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; 2021:167-187. doi:10.1016/B978-0-12-820586-0.00007-8
  • 45. Zhang P, Li S, Guo P, Zhang C. Seed-Assisted, OSDA-Free, Solvent-Free Synthesis of ZSM-5 Zeolite from Iron Ore Tailings. Waste Biomass Valorization. 2020;11(8):4381-4391. doi:10.1007/s12649-019-00752-4
  • 46. Yoo K, Hong EJ, Huynh TQ, Kim BS, Kim JG. Mechanochemical Regulation of Unstable Acyl Azide: Ir (III)-Catalyzed Nitrene Transfer C–H Amidation under Solvent-Free Ball Milling Conditions. ACS Sustain Chem Eng. 2021;9(26):8679-8685.
  • 47. Hassan A, Heakal BH, Khamis H, et al. Design, Synthesis, DFT Studies and Anticancer Activity of Novel Metal Complexes Containing 1, 3, 5-triazino [1, 2-a] benzimidazole Moiety Using Microwave as an Approach for Green Chemistry. Egypt J Chem. 2021;64(1):323-340.
  • 48. Younis A, Awad G. Utilization of Ultrasonic as an Approach of Green Chemistry for Synthesis of Hydrazones and Bishydrazones as Potential Antimicrobial Agents. Egypt J Chem. 2019;0(0):0-0. doi:10.21608/ejchem.2019.13440.1833
  • 49. Zhao W, Liu M, Shen C, et al. Biosynthesis of plant-specific alkaloids tetrahydroprotoberberines in engineered Escherichia coli. Green Chemistry. 2021;23(16):5944-5955.
  • 50. Jin X, Zhang W, Wang Y, et al. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chemistry. 2021;23(12):4365-4374.
  • 51. Zhou X, Ji H, Hu GH, Wang R, Zhang L. A solvent-less green synthetic route toward a sustainable bio-based elastomer: design, synthesis, and characterization of poly(dibutyl itaconate- co -butadiene). Polym Chem. 2019;10(45):6131-6144. doi:10.1039/C9PY01393H
  • 52. El-Sayed T, Aboelnaga A, El-Atawy M, Hagar M. Ball Milling Promoted N-Heterocycles Synthesis. Molecules. 2018;23(6):1348. doi:10.3390/molecules23061348
  • 53. Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS. A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry.’ Tetrahedron Lett. 2004;45(45):8351-8353.
  • 54. Ghahremanzadeh R, Ahadi S, Shakibaei GI, Bazgir A. Grindstone chemistry: one-pot synthesis of spiro [diindenopyridine-indoline] triones and spiro [acenaphthylene-diindenopyridine] triones. Tetrahedron Lett. 2010;51(3):499-502.
  • 55. Saikia L, Baruah JM, Thakur AJ. A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry. Org Med Chem Lett. 2011;1(1):1-6.
  • 56. Patel DS, Avalani JR, Raval DK. One-pot solvent-free rapid and green synthesis of 3, 4-dihydropyrano [c] chromenes using grindstone chemistry. Journal of Saudi Chemical Society. 2016;20:S401-S405.
  • 57. Sheldon RA. Green solvents for sustainable organic synthesis: state of the art. Green Chemistry. 2005;7(5):267-278.
  • 58. Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev. 2007;107(6):2503-2545.
  • 59. Abdel-Aziem A, Rashdan HRM, Mohamed Ahmed E, Shabaan SN. Synthesis and cytotoxic activity of some novel benzocoumarin derivatives under solvent free conditions. Green Chem Lett Rev. 2019;12(1):9-18.
  • 60. Andreosso I, Papagni A, Vaghi L. Mechanochemical oxidation of fluorinated anilines to symmetric azobenzenes. J Fluor Chem. 2018;216:124-127.
  • 61. Thangamani A. Grindstone chemistry: an efficient and green synthesis of 2-amino-4H-benzo [b] pyrans. Journal of Applied and Advanced Research. 2017;2(2):78-85.
  • 62. Howard JL, Sagatov Y, Browne DL. Mechanochemical electrophilic fluorination of liquid beta-ketoesters. Tetrahedron. 2018;74(25):3118-3123.
  • 63. Kaupp G, Naimi-Jamal MR, Schmeyers J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron. 2003;59(21):3753-3760.
  • 64. Tella AC, Eke UB, Owalude SO. Solvent-free mechanochemical synthesis and X-ray studies of Cu (II) and Ni (II) complexes of 5-(3, 4, 5-Trimethoxybenzyl) pyrimidine-2, 4-diamine (Trimethoprim) in a ball-mill. Journal of Saudi Chemical Society. 2016;20:S376-S381.
  • 65. Mazimba O. Antimicrobial activities of heterocycles derived from thienylchalcones. Journal of King Saud University-Science. 2015;27(1):42-48.
  • 66. Owens AR, Saunders GC, Thomas HP, Wehr-Candler TT. Solvent-free mechanochemical syntheses and reactions of π–π stacked arene–perfluoroarene co-crystals. J Fluor Chem. 2015;175:139-144.
  • 67. Sayed AR, Gomha SM, Abd El-lateef HM, Abolibda TZ. L-proline catalyzed green synthesis and anticancer evaluation of novel bioactive benzil bis-hydrazones under grinding technique. Green Chem Lett Rev. 2021;14(2):180-189. doi:10.1080/17518253.2021.1893392
  • 68. Zhang P, Liu C, Yu L, Hou H, Sun W, Ke F. Synthesis of benzimidazole by mortar–pestle grinding method. Green Chem Lett Rev. 2021;14(4):612-619. doi:10.1080/17518253.2021.1991483
  • 69. Yoo K, Hong EJ, Huynh TQ, Kim BS, Kim JG. Mechanochemical Regulation of Unstable Acyl Azide: Ir(III)-Catalyzed Nitrene Transfer C–H Amidation under Solvent-Free Ball Milling Conditions. ACS Sustain Chem Eng. 2021;9(26):8679-8685. doi:10.1021/acssuschemeng.1c01786
  • 70. Zeng JC, Xu H, Yu F, Zhang Z. Manganese (III) acetate mediated synthesis of polysubstituted pyrroles under solvent-free ball milling. Tetrahedron Lett. 2017;58(7):674-678. doi:10.1016/j.tetlet.2017.01.016
  • 71. Martínez A v, Invernizzi F, Leal-Duaso A, Mayoral JA, García JI. Microwave-promoted solventless Mizoroki–Heck reactions catalysed by Pd nanoparticles supported on laponite clay. RSC Adv. 2015;5(14):10102-10109.
  • 72. Princival C, Santos AA dos, Comasseto J v. Solventless and mild procedure to prepare organotellurium (IV) compounds under microwave irradiation. J Braz Chem Soc. 2015;26:832-836.
  • 73. Taher A, Nandi D, Islam RU, Choudhary M, Mallick K. Microwave assisted azide–alkyne cycloaddition reaction using polymer supported Cu (I) as a catalytic species: a solventless approach. RSC Adv. 2015;5(59):47275-47283.
  • 74. Keshwal BS, Rajguru D, Acharya AD, Jain S. Microwave-Assisted Solventless Synthesis of 3, 5-Diaryl-2, 6-dicyanoanilines. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2016;86(1):1-5.
  • 75. Rout L, Kumar A, Chand PK, Achary LSK, Dash P. Microwave‐Assisted Efficient One‐Pot Multi‐Component Synthesis of Octahydroquinazolinone Derivatives Catalyzed by Cu@ Ag Core‐Shell Nanoparticle. ChemistrySelect. 2019;4(19):5696-5706.
  • 76. Nain S, Singh R, Ravichandran S. Importance of Microwave Heating In Organic Synthesis. Advanced Journal of Chemistry-Section A. Published online January 30, 2019:94-104. doi:10.29088/SAMI/AJCA.2019.2.94104
  • 77. Zarie E, WAHDAN K, Wahba A, Heakal BH, Said A, Elbialy Z. Antimicrobial and antioxidant evaluation of newly synthesized nanomaterials of potential anticorrosion properties based on Co (II), Ni (II), Cu (II) and Zn (II) nano complexes of N-(p-methyl phenyl)-N-Benzoyl thiourea. Egypt J Chem. 2022;0(0):0-0. doi:10.21608/ejchem.2022.145699.6346
  • 78. Nüchter M, Ondruschka B, Bonrath W, Gum A. Microwave assisted synthesis–a critical technology overview. Green chemistry. 2004;6(3):128-141.
  • 79. Jha A. Microwave Assisted Synthesis of Organic Compounds and Nanomaterials. In: Nanofibers - Synthesis, Properties and Applications. IntechOpen; 2021. doi:10.5772/intechopen.98224
  • 80. Merillas B, Cuéllar E, Diez-Varga A, et al. Whole microwave syntheses of pyridylpyrazole and of Re and Ru luminescent pyridylpyrazole complexes. Inorganica Chim Acta. 2019;484:1-7.
  • 81. Moreno-Fuquen R, Arango-Daraviña K, Becerra D, Castillo JC, Kennedy AR, Macías MA. Catalyst-and solvent-free synthesis of 2-fluoro-N-(3-methylsulfanyl-1H-1, 2, 4-triazol-5-yl) benzamide through a microwave-assisted Fries rearrangement: X-ray structural and theoretical studies. Acta Crystallogr C Struct Chem. 2019;75(3):359-371.
  • 82. Kaur P, Kumar B, Kumar V, Kumar R. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction. Tetrahedron Lett. 2018;59(21):1986-1991.
  • 83. Baran NY. Fabrication and characterization of a novel easy recoverable and reusable Oligoazomethine-Pd (II) catalyst for Suzuki cross-coupling reactions. J Mol Struct. 2019;1176:266-274.
  • 84. Khurana JM, Lumb A, Pandey A, Magoo D. Green approaches for the synthesis of 12-aryl-8, 9, 10, 12-tetrahydrobenzo [a] xanthen-11-ones in aqueous media and under microwave irradiation in solventless conditions. Synth Commun. 2012;42(12):1796-1803.
  • 85. Bandyopadhyay D, Maldonado S, Banik BK. A microwave-assisted bismuth nitrate-catalyzed unique route toward 1, 4-dihydropyridines. Molecules. 2012;17(3):2643-2662.
  • 86. Zhang H, Jiang L. Microwave-assisted solvent-free synthesis of imidazo [1, 2-a] pyridines via a three-component reaction. Tetrahedron Lett. 2015;56(21):2777-2779.
  • 87. Cáceres-Castillo D, Carballo RM, Tzec-Interián JA, Mena-Rejón GJ. Solvent-free synthesis of 2-amino-4-arylthiazoles under microwave irradiation. Tetrahedron Lett. 2012;53(30):3934-3936.
  • 88. Liu Q, Pan N, Xu J, Zhang W, Kong F. Microwave-assisted and iodine-catalyzed synthesis of dihydropyrimidin-2-thiones via biginelli reaction under solvent-free conditions. Synth Commun. 2013;43(1):139-146.
  • 89. Fiorito S, Genovese S, Taddeo VA, Epifano F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett. 2015;56(19):2434-2436.
  • 90. Tran PH, Hansen PE, Nguyen HT, Le TN. Erbium trifluoromethanesulfonate catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation. Tetrahedron Lett. 2015;56(4):612-618.
  • 91. Zhang D, Zhang Y, Zhao T, Li J, Hou Y, Gu Q. A rapid and efficient solvent-free microwave-assisted synthesis of pyrazolone derivatives containing substituted isoxazole ring. Tetrahedron. 2016;72(22):2979-2987.
  • 92. Sharma S, Sharma K, Ojha R, et al. Microwave assisted synthesis of naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2014;24(2):495-500.
  • 93. Reddy MV, Kumar BS, Lim KT, Cho BG, Jeong YT. Microwave-promoted efficient synthesis of pyrano [3, 2-c] chromen-5 (4H)-ones under catalyst and solvent-free conditions. Tetrahedron Lett. 2016;57(4):476-478.
  • 94. Satyanarayana S, Kumar KP, Reddy PL, Narender R, Narasimhulu G, Reddy BVS. Microwave-assisted cyclocondensation: a rapid and solvent-free synthesis of 3-benzyl-2H-pyrido [1, 2-a] pyrimidin-2-one derivatives. Tetrahedron Lett. 2013;54(36):4892-4895.
  • 95. Sarmah MM, Sarma R, Prajapati D, Hu W. Efficient synthesis of dihydropyrido [4, 3-d] pyrimidines by microwave-promoted three-component aza-Diels–Alder reaction. Tetrahedron Lett. 2013;54(3):267-271.
  • 96. Vaddula BR, Varma RS, Leazer J. Mixing with microwaves: Solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett. 2013;54(12):1538-1541.
  • 97. Zhang LP, Shang XB, Wu QF, Zhang Y, Li JP. Highly Efficient Method for the Synthesis of 1, 4-Phenylenedithioureas Under Solvent- and Catalyst-Free Conditions Promoted by Microwave Irridiation. Synth Commun. 2012;42(7):1045-1052.
  • 98. Das S, Santra S, Roy A, Urinda S, Majee A, Hajra A. One-pot multicomponent synthesis of polyhydroquinolines under catalyst and solvent-free conditions. Green Chem Lett Rev. 2012;5(1):97-100.
  • 99. Yin G, Liu Q, Ma J, She N. Solvent-and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chemistry. 2012;14(6):1796-1798.
  • 100. Sarma R, Sarmah MM, Prajapati D. Microwave-promoted catalyst-and solvent-free aza-Diels–Alder reaction of aldimines with 6-[2-(dimethylamino) vinyl]-1, 3-dimethyluracil. J Org Chem. 2012;77(4):2018-2023.
  • 101. D. D, L. Gaonkar S, S. Shetty N kumar. SYNTHESIS OF THIOESTERS AND THIOAMIDES USING POTASSIUM THIOCYANATE UNDER MICROWAVE IRRADIATION. Rasayan Journal of Chemistry. 2022;15(01):288-291. doi:10.31788/RJC.2022.1516614
  • 102. Kulkarni P. An efficient solvent-free synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using microwave irradiation. Journal of the Indian Chemical Society. 2021;98(1):100013. doi:10.1016/j.jics.2021.100013
  • 103. Rao DJ, Nagaraju K, Maddila S. Microwave irradiated mild, rapid, one-pot and multi-component synthesis of isoxazole-5(4H)-ones. Chemical Data Collections. 2021;32:100669. doi:10.1016/j.cdc.2021.100669
  • 104. Kumar H, Parmar A. Ultrasound promoted ZrCl4 catalyzed rapid synthesis of substituted 1, 2, 3, 4-tetrahydropyrimidine-2-ones in solvent or dry media. Ultrason Sonochem. 2008;15(2):129-132.
  • 105. Upadhyaya DJ, Barge A, Stefania R, Cravotto G. Efficient, solventless N-Boc protection of amines carried out at room temperature using sulfamic acid as recyclable catalyst. Tetrahedron Lett. 2007;48(47):8318-8322.
  • 106. He JY, Xin HX, Yan H, Song XQ, Zhong RG. Convenient ultrasound-mediated synthesis of 1, 4-diazabutadienes under solvent-free conditions. Ultrason Sonochem. 2011;18(1):466-469.
  • 107. Chtourou M, Abdelhédi R, Frikha MH, Trabelsi M. Solvent free synthesis of 1, 3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation. Ultrason Sonochem. 2010;17(1):246-249.
  • 108. Perozo-Rondón E, Martín-Aranda RM, Casal B, et al. Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites. Catal Today. 2006;114(2-3):183-187.
  • 109. Estager J, Leveque JM, Cravotto G, Boffa L, Bonrath W, Draye M. One-pot and solventless synthesis of ionic liquids under ultrasonic irradiation. Synlett. 2007;2007(13):2065-2068.
  • 110. Puri S, Parmar A, Chopra HK. Ultrasound assisted reactions. In: Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier; 2021:177-246. doi:10.1016/B978-0-12-821938-6.00006-2
  • 111. Szabados M, Sipos P, Pálinkó I. Application of sonochemical activation in synthetic organic chemistry. In: Nontraditional Activation Methods in Green and Sustainable Applications. Elsevier; 2021:137-170. doi:10.1016/B978-0-12-819009-8.00007-4
  • 112. Faisal M. Sonochemical protocol for solvent-free organic synthesis. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier; 2020:113-139. doi:10.1016/B978-0-12-819540-6.00005-X
  • 113. Khumraksa B, Phakhodee W, Pattarawarapan M. Ultrasound-assisted solventless synthesis of amines by in situ oxidation/reductive amination of benzyl halides. RSC Adv. 2014;4(39):20454-20458.
  • 114. Achary LSK, Nayak PS, Barik B, Kumar A, Dash P. Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via Mannich reaction. Catal Today. 2020;348:137-147.
  • 115. Naeimi A, Honarmand M, Sedri A. Ultrasonic assisted fabrication of first MoO3/copper complex bio-nanocomposite based on Sesbania sesban plant for green oxidation of alcohols. Ultrason Sonochem. 2019;50:331-338.
  • 116. Jasim SA, Tanjung FA, Sharma S, Mahmoud MZ, Kadhim SB, Kazemnejadi M. Ultrasound and microwave irradiated sustainable synthesis of 5- and 1-substituted tetrazoles in TAIm[I] ionic liquid. Research on Chemical Intermediates. 2022;48(8):3547-3566. doi:10.1007/s11164-022-04756-z
  • 117. Kerton FM, Marriott R. Alternative Solvents for Green Chemistry. Royal Society of chemistry; 2013.
  • 118. Avila-Ortiz CG, Juaristi E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules. 2020;25(16):3579.
  • 119. Obst M, König B. Organic synthesis without conventional solvents. European J Org Chem. 2018;2018(31):4213-4232.
  • 120. Cintas P, Tabasso S, Veselov V v, Cravotto G. Alternative reaction conditions: Enabling technologies in solvent-free protocols. Curr Opin Green Sustain Chem. 2020;21:44-49.
  • 121. Nagendrappa G. Organic synthesis under solvent-free condition: An environmentally benign procedure—I. Resonance. 2002;7(10):59-68.
  • 122. Ohkubo K, Hirose K, Fukuzumi S. Solvent-Free One-Step Photochemical Hydroxylation of Benzene Derivatives by the Singlet Excited State of 2,3-Dichloro-5,6-dicyano- p -benzoquinone Acting as a Super Oxidant. Chemistry - A European Journal. 2015;21(7):2855-2861. doi:10.1002/chem.201404810
  • 123. Nazeef M, Shivhare KN, Ali S, et al. Visible-light-promoted C N and C S bonds formation: A catalyst and solvent-free photochemical approach for the synthesis of 1,3-thiazolidin-4-ones. J Photochem Photobiol A Chem. 2020;390:112347. doi:10.1016/j.jphotochem.2019.112347
There are 123 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section REVIEW ARTICLES
Authors

Ahmed Younis This is me 0000-0001-9888-215X

Ahmed Osman 0000-0002-2473-9315

Publication Date May 31, 2023
Submission Date October 16, 2022
Acceptance Date April 28, 2023
Published in Issue Year 2023

Cite

Vancouver Younis A, Osman A. Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry. JOTCSA. 2023;10(2):549-76.