Research Article
BibTex RIS Cite

Effect of AOT/Heptane Reverse Micelles on Oxidation of Ferroin by Metaperiodate: Kinetic and Mechanistic Aspects

Year 2023, , 1099 - 1106, 11.11.2023
https://doi.org/10.18596/jotcsa.1226805

Abstract

A kinetic study of the oxidation of Ferroin, [Fe(phen)3]2+ by metaperiodate (IO4-) has been carried out in AOT/heptane reverse micelles by changing W = ([H2O]/[AOT]) and AOT concentration. The reaction order is first order with respect to Ferroin, while zero order with respect to IO4-. The reaction rate is faster in aqueous medium compared to AOT reverse micelles by eight times. The oxidation rate increases with an increase in the value of W (at fixed surfactant concentration, [AOT]) and decreases with AOT concentration. The effect of W on rate is elucidated based on the low dielectric constant of the water pool. Berezin's pseudo-phase model has been applied to explain the effect of AOT on rate.

Project Number

MOES/ICMAM – PD/Supply. Order/81/2017.

Thanks

P. Shyamala thanks the Ministry of Earth Sciences (MOES), National Centre for Coastal Research (NCCR), and the Government of India for financial support under major project No MOES/ICMAM – PD/Supply. Order/81/2017.

References

  • 1. Muñoz E, Gómez-Herrera C, Graciani M del M, Moyá ML, Sánchez F. Kinetics of the oxidation of iodide by persulphate in AOT–oil–water microemulsions. J Chem Soc, Faraday Trans [Internet]. 1991 Jan 1;87(1):129–32. Available from: <URL>.
  • 2. Sunamoto J, Hamada T. Solvochromism and Thermochromism of Cobalt(II) Complexes Solubilized in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1978 Nov 19;51(11):3130–5. Available from: <URL>.
  • 3. Bridge NJ, Fletcher PDI. Time-resolved studies of fluorescence quenching in a water-in-oil microemulsion. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases [Internet]. 1983 Jan 1;79(9):2161–9. Available from: <URL>.
  • 4. Nicholson J, Clark J. Surfactants in solution. Mittal K, editor. Vol. 3, Ed. KL Mittal, Plenum Press, New York—London. New York: Plenum Press; 1984. 1663–1674 p.
  • 5. Mandal HK, Majumdar T, Mahapatra A. Kinetics of basic hydrolysis of tris(1,10-phenanthroline)iron(II) in macromolecular assemblies of CTAB. Int J Chem Kinet [Internet]. 2011 Oct 1;43(10):579–89. Available from: <URL>.
  • 6. Johnson MD, Lorenz BB, Wilkins PC, Lemons BG, Baruah B, Lamborn N, et al. Switching off electron transfer reactions in confined media: Reduction of [Co(dipic) 2] - and [Co(edta)] - by hexacyanoferrate(II). Inorg Chem [Internet]. 2012 Mar 5;51(5):2757–65. Available from: <URL>.
  • 7. García-Río L, Mejuto JC, Pérez-Lorenzo M. Microheterogeneous Solvation for Aminolysis Reactions in AOT-Based Water-in-Oil Microemulsions. Chem – A Eur J [Internet]. 2005 Jul 18;11(15):4361–73. Available from: <URL>.
  • 8. Yao C, Tang S, He Z, Deng X. Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelles. J Mol Catal B Enzym [Internet]. 2005 Sep 1;35(4–6):108–12. Available from: <URL>.
  • 9. Eskici G, Axelsen PH. The size of AOT reverse micelles. J Phys Chem B [Internet]. 2016 Nov 10;120(44):11337–47. Available from: <URL>.
  • 10. Bru R, Sánchez-Ferrer A, García-Carmona F. Kinetic models in reverse micelles. Biochem J [Internet]. 1995 Sep 15;310(3):721–39. Available from: <URL>.
  • 11. Cid A, Acuña A, Alonso-Ferrer M, Astray G, García-Río L, Simal-Gándara J, et al. Pseudophase Model in Microemulsions. In: Mejuto JC, editor. Microemulsion - A Chemical Nanoreactor [Internet]. IntechOpen; 2019. Available from: <URL>.
  • 12. Goto A, Kishimoto H. The Addition of the Cyanide Ion to the N -Methyl-3-carbamoylpyridinium Ion in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1989 Sep 27;62(9):2854–61. Available from: <URL>.
  • 13. Rathman JF. Micellar catalysis. Curr Opin Colloid Interface Sci [Internet]. 1996 Aug 1;1(4):514–8. Available from: <URL>.
  • 14. Venkateswarlu G, Rao GSRK. Kinetics of the dissociation of tris (2, 2’-bipyridyl) iron (II) and tris (1, 10-phenanthroline) iron (II) in the reverse micelles of Tween-85 in cyclohexane. J Indian Chem Soc. 2009;86(8):822–5.
  • 15. Nagalakshmi K V, Shyamala P, Rao S. Notes Catalytic effect of CTAB reverse micelles on the oxidation of indigo carmine by periodate. Indian J Chem [Internet]. 2015;54:351–5. Available from: <URL>.
  • 16. Nagalakshmi K V., Padma M, Shyamala P, Srikanth V, Satyanarayana A, SubbaRao P V. Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6–tripyridyl-s-triazine) iron(II). Transit Met Chem [Internet]. 2013 Aug 3;38(5):523–7. Available from: <URL>.
  • 17. Nagalakshmi K V., Shyamala P. Acid Hydrolysis of Bis(2,2’; 6’,2’’–Terpyridyl) Iron(II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium. Bull Chem React Eng Catal [Internet]. 2020 Dec 28;15(3):853–60. Available from: <URL>.
  • 18. Nagalakshmi K V, Shyamala P. Effect of CTAB reverse micelles on the kinetics of aminolysis of p-nitrophenyl acetate by hydrazine. J Indian Chem Soc [Internet]. 2020;97:737–41. Available from: <URL>.
  • 19. Nagalakshmi KV, Shyamala P, Subba Rao PV. Kinetics of oxidation of toluidine blue by periodate: Catalysis by water pools of CTAB. Curr Chem Lett [Internet]. 2018;7(3):93–100. Available from: <URL>.
  • 20. Azum N, Rub MA, Alfaifi SY, Asiri AM. Interaction of Diphenhydramine Hydrochloride with Cationic and Anionic Surfactants: Mixed Micellization and Binding Studies. Polymers (Basel) [Internet]. 2021 Apr 9;13(8):1214. Available from: <URL>.
  • 21. Laidler KJ. Chemical kinetics. 3rd edition. 1987. 197 p.
Year 2023, , 1099 - 1106, 11.11.2023
https://doi.org/10.18596/jotcsa.1226805

Abstract

Project Number

MOES/ICMAM – PD/Supply. Order/81/2017.

References

  • 1. Muñoz E, Gómez-Herrera C, Graciani M del M, Moyá ML, Sánchez F. Kinetics of the oxidation of iodide by persulphate in AOT–oil–water microemulsions. J Chem Soc, Faraday Trans [Internet]. 1991 Jan 1;87(1):129–32. Available from: <URL>.
  • 2. Sunamoto J, Hamada T. Solvochromism and Thermochromism of Cobalt(II) Complexes Solubilized in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1978 Nov 19;51(11):3130–5. Available from: <URL>.
  • 3. Bridge NJ, Fletcher PDI. Time-resolved studies of fluorescence quenching in a water-in-oil microemulsion. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases [Internet]. 1983 Jan 1;79(9):2161–9. Available from: <URL>.
  • 4. Nicholson J, Clark J. Surfactants in solution. Mittal K, editor. Vol. 3, Ed. KL Mittal, Plenum Press, New York—London. New York: Plenum Press; 1984. 1663–1674 p.
  • 5. Mandal HK, Majumdar T, Mahapatra A. Kinetics of basic hydrolysis of tris(1,10-phenanthroline)iron(II) in macromolecular assemblies of CTAB. Int J Chem Kinet [Internet]. 2011 Oct 1;43(10):579–89. Available from: <URL>.
  • 6. Johnson MD, Lorenz BB, Wilkins PC, Lemons BG, Baruah B, Lamborn N, et al. Switching off electron transfer reactions in confined media: Reduction of [Co(dipic) 2] - and [Co(edta)] - by hexacyanoferrate(II). Inorg Chem [Internet]. 2012 Mar 5;51(5):2757–65. Available from: <URL>.
  • 7. García-Río L, Mejuto JC, Pérez-Lorenzo M. Microheterogeneous Solvation for Aminolysis Reactions in AOT-Based Water-in-Oil Microemulsions. Chem – A Eur J [Internet]. 2005 Jul 18;11(15):4361–73. Available from: <URL>.
  • 8. Yao C, Tang S, He Z, Deng X. Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelles. J Mol Catal B Enzym [Internet]. 2005 Sep 1;35(4–6):108–12. Available from: <URL>.
  • 9. Eskici G, Axelsen PH. The size of AOT reverse micelles. J Phys Chem B [Internet]. 2016 Nov 10;120(44):11337–47. Available from: <URL>.
  • 10. Bru R, Sánchez-Ferrer A, García-Carmona F. Kinetic models in reverse micelles. Biochem J [Internet]. 1995 Sep 15;310(3):721–39. Available from: <URL>.
  • 11. Cid A, Acuña A, Alonso-Ferrer M, Astray G, García-Río L, Simal-Gándara J, et al. Pseudophase Model in Microemulsions. In: Mejuto JC, editor. Microemulsion - A Chemical Nanoreactor [Internet]. IntechOpen; 2019. Available from: <URL>.
  • 12. Goto A, Kishimoto H. The Addition of the Cyanide Ion to the N -Methyl-3-carbamoylpyridinium Ion in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1989 Sep 27;62(9):2854–61. Available from: <URL>.
  • 13. Rathman JF. Micellar catalysis. Curr Opin Colloid Interface Sci [Internet]. 1996 Aug 1;1(4):514–8. Available from: <URL>.
  • 14. Venkateswarlu G, Rao GSRK. Kinetics of the dissociation of tris (2, 2’-bipyridyl) iron (II) and tris (1, 10-phenanthroline) iron (II) in the reverse micelles of Tween-85 in cyclohexane. J Indian Chem Soc. 2009;86(8):822–5.
  • 15. Nagalakshmi K V, Shyamala P, Rao S. Notes Catalytic effect of CTAB reverse micelles on the oxidation of indigo carmine by periodate. Indian J Chem [Internet]. 2015;54:351–5. Available from: <URL>.
  • 16. Nagalakshmi K V., Padma M, Shyamala P, Srikanth V, Satyanarayana A, SubbaRao P V. Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6–tripyridyl-s-triazine) iron(II). Transit Met Chem [Internet]. 2013 Aug 3;38(5):523–7. Available from: <URL>.
  • 17. Nagalakshmi K V., Shyamala P. Acid Hydrolysis of Bis(2,2’; 6’,2’’–Terpyridyl) Iron(II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium. Bull Chem React Eng Catal [Internet]. 2020 Dec 28;15(3):853–60. Available from: <URL>.
  • 18. Nagalakshmi K V, Shyamala P. Effect of CTAB reverse micelles on the kinetics of aminolysis of p-nitrophenyl acetate by hydrazine. J Indian Chem Soc [Internet]. 2020;97:737–41. Available from: <URL>.
  • 19. Nagalakshmi KV, Shyamala P, Subba Rao PV. Kinetics of oxidation of toluidine blue by periodate: Catalysis by water pools of CTAB. Curr Chem Lett [Internet]. 2018;7(3):93–100. Available from: <URL>.
  • 20. Azum N, Rub MA, Alfaifi SY, Asiri AM. Interaction of Diphenhydramine Hydrochloride with Cationic and Anionic Surfactants: Mixed Micellization and Binding Studies. Polymers (Basel) [Internet]. 2021 Apr 9;13(8):1214. Available from: <URL>.
  • 21. Laidler KJ. Chemical kinetics. 3rd edition. 1987. 197 p.
There are 21 citations in total.

Details

Primary Language English
Subjects Physical Chemistry
Journal Section RESEARCH ARTICLES
Authors

Leela Kumari Bodasingi 0000-0003-2446-8452

Shyamala Pulipaka 0000-0001-8271-2607

Venkata Nagalakshmi Kilana 0000-0002-2779-4707

Project Number MOES/ICMAM – PD/Supply. Order/81/2017.
Publication Date November 11, 2023
Submission Date December 31, 2022
Acceptance Date September 19, 2023
Published in Issue Year 2023

Cite

Vancouver Bodasingi LK, Pulipaka S, Kilana VN. Effect of AOT/Heptane Reverse Micelles on Oxidation of Ferroin by Metaperiodate: Kinetic and Mechanistic Aspects. JOTCSA. 2023;10(4):1099-106.