Effect of AOT/Heptane Reverse Micelles on Oxidation of Ferroin by Metaperiodate: Kinetic and Mechanistic Aspects
Year 2023,
, 1099 - 1106, 11.11.2023
Leela Kumari Bodasingi
,
Shyamala Pulipaka
,
Venkata Nagalakshmi Kilana
Abstract
A kinetic study of the oxidation of Ferroin, [Fe(phen)3]2+ by metaperiodate (IO4-) has been carried out in AOT/heptane reverse micelles by changing W = ([H2O]/[AOT]) and AOT concentration. The reaction order is first order with respect to Ferroin, while zero order with respect to IO4-. The reaction rate is faster in aqueous medium compared to AOT reverse micelles by eight times. The oxidation rate increases with an increase in the value of W (at fixed surfactant concentration, [AOT]) and decreases with AOT concentration. The effect of W on rate is elucidated based on the low dielectric constant of the water pool. Berezin's pseudo-phase model has been applied to explain the effect of AOT on rate.
Project Number
MOES/ICMAM – PD/Supply. Order/81/2017.
Thanks
P. Shyamala thanks the Ministry of Earth Sciences (MOES), National Centre for Coastal Research (NCCR), and the Government of India for financial support under major project No MOES/ICMAM – PD/Supply. Order/81/2017.
References
- 1. Muñoz E, Gómez-Herrera C, Graciani M del M, Moyá ML, Sánchez F. Kinetics of the oxidation of iodide by persulphate in AOT–oil–water microemulsions. J Chem Soc, Faraday Trans [Internet]. 1991 Jan 1;87(1):129–32. Available from: <URL>.
- 2. Sunamoto J, Hamada T. Solvochromism and Thermochromism of Cobalt(II) Complexes Solubilized in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1978 Nov 19;51(11):3130–5. Available from: <URL>.
- 3. Bridge NJ, Fletcher PDI. Time-resolved studies of fluorescence quenching in a water-in-oil microemulsion. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases [Internet]. 1983 Jan 1;79(9):2161–9. Available from: <URL>.
- 4. Nicholson J, Clark J. Surfactants in solution. Mittal K, editor. Vol. 3, Ed. KL Mittal, Plenum Press, New York—London. New York: Plenum Press; 1984. 1663–1674 p.
- 5. Mandal HK, Majumdar T, Mahapatra A. Kinetics of basic hydrolysis of tris(1,10-phenanthroline)iron(II) in macromolecular assemblies of CTAB. Int J Chem Kinet [Internet]. 2011 Oct 1;43(10):579–89. Available from: <URL>.
- 6. Johnson MD, Lorenz BB, Wilkins PC, Lemons BG, Baruah B, Lamborn N, et al. Switching off electron transfer reactions in confined media: Reduction of [Co(dipic) 2] - and [Co(edta)] - by hexacyanoferrate(II). Inorg Chem [Internet]. 2012 Mar 5;51(5):2757–65. Available from: <URL>.
- 7. García-Río L, Mejuto JC, Pérez-Lorenzo M. Microheterogeneous Solvation for Aminolysis Reactions in AOT-Based Water-in-Oil Microemulsions. Chem – A Eur J [Internet]. 2005 Jul 18;11(15):4361–73. Available from: <URL>.
- 8. Yao C, Tang S, He Z, Deng X. Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelles. J Mol Catal B Enzym [Internet]. 2005 Sep 1;35(4–6):108–12. Available from: <URL>.
- 9. Eskici G, Axelsen PH. The size of AOT reverse micelles. J Phys Chem B [Internet]. 2016 Nov 10;120(44):11337–47. Available from: <URL>.
- 10. Bru R, Sánchez-Ferrer A, García-Carmona F. Kinetic models in reverse micelles. Biochem J [Internet]. 1995 Sep 15;310(3):721–39. Available from: <URL>.
- 11. Cid A, Acuña A, Alonso-Ferrer M, Astray G, García-Río L, Simal-Gándara J, et al. Pseudophase Model in Microemulsions. In: Mejuto JC, editor. Microemulsion - A Chemical Nanoreactor [Internet]. IntechOpen; 2019. Available from: <URL>.
- 12. Goto A, Kishimoto H. The Addition of the Cyanide Ion to the N -Methyl-3-carbamoylpyridinium Ion in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1989 Sep 27;62(9):2854–61. Available from: <URL>.
- 13. Rathman JF. Micellar catalysis. Curr Opin Colloid Interface Sci [Internet]. 1996 Aug 1;1(4):514–8. Available from: <URL>.
- 14. Venkateswarlu G, Rao GSRK. Kinetics of the dissociation of tris (2, 2’-bipyridyl) iron (II) and tris (1, 10-phenanthroline) iron (II) in the reverse micelles of Tween-85 in cyclohexane. J Indian Chem Soc. 2009;86(8):822–5.
- 15. Nagalakshmi K V, Shyamala P, Rao S. Notes Catalytic effect of CTAB reverse micelles on the oxidation of indigo carmine by periodate. Indian J Chem [Internet]. 2015;54:351–5. Available from: <URL>.
- 16. Nagalakshmi K V., Padma M, Shyamala P, Srikanth V, Satyanarayana A, SubbaRao P V. Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6–tripyridyl-s-triazine) iron(II). Transit Met Chem [Internet]. 2013 Aug 3;38(5):523–7. Available from: <URL>.
- 17. Nagalakshmi K V., Shyamala P. Acid Hydrolysis of Bis(2,2’; 6’,2’’–Terpyridyl) Iron(II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium. Bull Chem React Eng Catal [Internet]. 2020 Dec 28;15(3):853–60. Available from: <URL>.
- 18. Nagalakshmi K V, Shyamala P. Effect of CTAB reverse micelles on the kinetics of aminolysis of p-nitrophenyl acetate by hydrazine. J Indian Chem Soc [Internet]. 2020;97:737–41. Available from: <URL>.
- 19. Nagalakshmi KV, Shyamala P, Subba Rao PV. Kinetics of oxidation of toluidine blue by periodate: Catalysis by water pools of CTAB. Curr Chem Lett [Internet]. 2018;7(3):93–100. Available from: <URL>.
- 20. Azum N, Rub MA, Alfaifi SY, Asiri AM. Interaction of Diphenhydramine Hydrochloride with Cationic and Anionic Surfactants: Mixed Micellization and Binding Studies. Polymers (Basel) [Internet]. 2021 Apr 9;13(8):1214. Available from: <URL>.
- 21. Laidler KJ. Chemical kinetics. 3rd edition. 1987. 197 p.
Year 2023,
, 1099 - 1106, 11.11.2023
Leela Kumari Bodasingi
,
Shyamala Pulipaka
,
Venkata Nagalakshmi Kilana
Project Number
MOES/ICMAM – PD/Supply. Order/81/2017.
References
- 1. Muñoz E, Gómez-Herrera C, Graciani M del M, Moyá ML, Sánchez F. Kinetics of the oxidation of iodide by persulphate in AOT–oil–water microemulsions. J Chem Soc, Faraday Trans [Internet]. 1991 Jan 1;87(1):129–32. Available from: <URL>.
- 2. Sunamoto J, Hamada T. Solvochromism and Thermochromism of Cobalt(II) Complexes Solubilized in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1978 Nov 19;51(11):3130–5. Available from: <URL>.
- 3. Bridge NJ, Fletcher PDI. Time-resolved studies of fluorescence quenching in a water-in-oil microemulsion. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases [Internet]. 1983 Jan 1;79(9):2161–9. Available from: <URL>.
- 4. Nicholson J, Clark J. Surfactants in solution. Mittal K, editor. Vol. 3, Ed. KL Mittal, Plenum Press, New York—London. New York: Plenum Press; 1984. 1663–1674 p.
- 5. Mandal HK, Majumdar T, Mahapatra A. Kinetics of basic hydrolysis of tris(1,10-phenanthroline)iron(II) in macromolecular assemblies of CTAB. Int J Chem Kinet [Internet]. 2011 Oct 1;43(10):579–89. Available from: <URL>.
- 6. Johnson MD, Lorenz BB, Wilkins PC, Lemons BG, Baruah B, Lamborn N, et al. Switching off electron transfer reactions in confined media: Reduction of [Co(dipic) 2] - and [Co(edta)] - by hexacyanoferrate(II). Inorg Chem [Internet]. 2012 Mar 5;51(5):2757–65. Available from: <URL>.
- 7. García-Río L, Mejuto JC, Pérez-Lorenzo M. Microheterogeneous Solvation for Aminolysis Reactions in AOT-Based Water-in-Oil Microemulsions. Chem – A Eur J [Internet]. 2005 Jul 18;11(15):4361–73. Available from: <URL>.
- 8. Yao C, Tang S, He Z, Deng X. Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelles. J Mol Catal B Enzym [Internet]. 2005 Sep 1;35(4–6):108–12. Available from: <URL>.
- 9. Eskici G, Axelsen PH. The size of AOT reverse micelles. J Phys Chem B [Internet]. 2016 Nov 10;120(44):11337–47. Available from: <URL>.
- 10. Bru R, Sánchez-Ferrer A, García-Carmona F. Kinetic models in reverse micelles. Biochem J [Internet]. 1995 Sep 15;310(3):721–39. Available from: <URL>.
- 11. Cid A, Acuña A, Alonso-Ferrer M, Astray G, García-Río L, Simal-Gándara J, et al. Pseudophase Model in Microemulsions. In: Mejuto JC, editor. Microemulsion - A Chemical Nanoreactor [Internet]. IntechOpen; 2019. Available from: <URL>.
- 12. Goto A, Kishimoto H. The Addition of the Cyanide Ion to the N -Methyl-3-carbamoylpyridinium Ion in Reversed Micelles. Bull Chem Soc Jpn [Internet]. 1989 Sep 27;62(9):2854–61. Available from: <URL>.
- 13. Rathman JF. Micellar catalysis. Curr Opin Colloid Interface Sci [Internet]. 1996 Aug 1;1(4):514–8. Available from: <URL>.
- 14. Venkateswarlu G, Rao GSRK. Kinetics of the dissociation of tris (2, 2’-bipyridyl) iron (II) and tris (1, 10-phenanthroline) iron (II) in the reverse micelles of Tween-85 in cyclohexane. J Indian Chem Soc. 2009;86(8):822–5.
- 15. Nagalakshmi K V, Shyamala P, Rao S. Notes Catalytic effect of CTAB reverse micelles on the oxidation of indigo carmine by periodate. Indian J Chem [Internet]. 2015;54:351–5. Available from: <URL>.
- 16. Nagalakshmi K V., Padma M, Shyamala P, Srikanth V, Satyanarayana A, SubbaRao P V. Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6–tripyridyl-s-triazine) iron(II). Transit Met Chem [Internet]. 2013 Aug 3;38(5):523–7. Available from: <URL>.
- 17. Nagalakshmi K V., Shyamala P. Acid Hydrolysis of Bis(2,2’; 6’,2’’–Terpyridyl) Iron(II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium. Bull Chem React Eng Catal [Internet]. 2020 Dec 28;15(3):853–60. Available from: <URL>.
- 18. Nagalakshmi K V, Shyamala P. Effect of CTAB reverse micelles on the kinetics of aminolysis of p-nitrophenyl acetate by hydrazine. J Indian Chem Soc [Internet]. 2020;97:737–41. Available from: <URL>.
- 19. Nagalakshmi KV, Shyamala P, Subba Rao PV. Kinetics of oxidation of toluidine blue by periodate: Catalysis by water pools of CTAB. Curr Chem Lett [Internet]. 2018;7(3):93–100. Available from: <URL>.
- 20. Azum N, Rub MA, Alfaifi SY, Asiri AM. Interaction of Diphenhydramine Hydrochloride with Cationic and Anionic Surfactants: Mixed Micellization and Binding Studies. Polymers (Basel) [Internet]. 2021 Apr 9;13(8):1214. Available from: <URL>.
- 21. Laidler KJ. Chemical kinetics. 3rd edition. 1987. 197 p.