Research Article
BibTex RIS Cite

Tyramine Adsorption Using the Modification of Takari Natural Sand-Based Silica with Bovine Serum Albumin (BSA)

Year 2023, , 929 - 940, 11.11.2023
https://doi.org/10.18596/jotcsa.1244774

Abstract

In this article, we use a batch method to convey tyramine adsorption by modifying Takari natural sand-based silica with BSA and tyramine adsorption. The research stages include the optimization of adsorbent mass, pH, temperature, determination of the isotherm model, and thermodynamic parameters of tyramine adsorption. The tyramine concentration was determined using UV-Vis. The characterizations carried out were functional groups using FT-IR and surface morphology using SEM. The results of FT-IR characterization demonstrated the success of BSA modification, as observed in the C-H, N-H, and C-N groups, which are the typical functional groups of BSA. The SEM image of SiO2@BSA before tyramine adsorption revealed unevenly sized particles, uneven distribution, and agglomeration, leading to larger particles. The morphology of SiO2@BSA-tyramine appeared to be more uniform, exhibiting a smoother shape with a slightly uneven surface. The optimum pH was 5 (qe=11.74 mg/g), and the optimum temperature was 303 K (qe= 2.47 mg/g). The isotherm study showed that the adsorption adhered to the Redlich-Peterson isotherm model with an R2 value of 0.987 (qe=5.157 mg/g and n =3.759). The thermodynamic study demonstrated ∆Ho = 49.08 kJ/mol, ∆Go =-17.84; -20.05 and -22.26 kJ/mol, and ∆So =0.22 kJ/mol.K. These results indicated that the tyramine adsorption process on SiO2@BSA adsorbent occurred endothermically and spontaneously at the temperature of 303 K, and the adsorption was of a physical-chemical adsorption type.

References

  • 1. Finberg JPM & Gillman K. Selective inhibitors of monoamine oxidase type B and the cheese effect. International review of neurobiology. 2011(100):169–190. Available from: <URL>.
  • 2. McCabe-Sellers BJ, Staggs CG & Bogle ML. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. Journal of Food Composition and Analysis. 2006(19). Available from: <URL>.
  • 3. Halász A, Baráth Á, Simon-Sarkadi L, & Holzapfel W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994(5):42–49. Available from: <URL>.
  • 4. Santos MHS. Biogenic amines: their importance in foods. 1996 (29):213–231. Available from: <URL>.
  • 5. Andersen G, Marcinek P, Sulzinger N, Schieberle P, and Krautwurst D. Food sources and biomolecular targets of tyramine. Nutrition reviews. 2019(77): 107–115. Available from: <URL>.
  • 6. Spano G, Russo P, Lonfaud F. Biogenic amines in fermented foods. Eur J Clin Nutr 64 (Suppl 3), 2010: S95–S100. Available from: <URL>.
  • 7. Linares DM, del Rio B, Redruello B, Ladero V, Martin MC, Fernandez M. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food chemistry, 2016(197):658–663. Available from: <URL>.
  • 8. Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D. Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci. Technol., 2013(30): 38-55. Available from: <URL>.
  • 9. Redruello B, Ladero V, Cuesta I, Álvarez-Buylla JR, Martín MC, Fernández M, Alvarez MA. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem. 2013(13): 1029-1035. Available from: <URL>.
  • 10. Jastrzębska, A. A comparative study for determination of biogenic amines in meat samples by capillary isotachophoresis with two electrolyte systems. Eur Food Res Technol 2012(235): 563–572. Available from: <URL>.
  • 11. Romano A, Klebanowski H, Guerche SL, Beneduce L, Spano G, Murat ML, Lucas P. Determination of biogenic amines in wine by thin-layer chromatography/densitometry, Food Chem. 2012(135): 1392-1396. Available from: <URL>.
  • 12. Vlasova NN, Markitan OV, and Golovkova LP. Adsorption of biogenic amines on albumin-modified silica surface. Colloid J. 2011(73): 24–27. Available from: <URL>.
  • 13. Sidorenko IG, Markitan OV, Vlasova NN, Zagorovskii GM, and Lobanov VV. The Adsorption of Biogenic Amines on Carbon Nanotubes. 2009(83): 1139–1142. Available from: <URL>.
  • 14. Chang PH, Jiang WT, and Li Z. Mechanism of tyramine adsorption on Ca-montmorillonite. Sci. Total Environ. 2018(642):198–207. Available from: <URL>.
  • 15. Naat J. Pb(II) Adsorption using Silica from Natural Sand of Takari-NTT. KOVALEN: Jurnal Riset Kimia. 2022(8): 266-279. Available from: <URL>.
  • 16. Asip F, Mardhiah R, and Husna. Eggshell Effectiveness Test in Adsorbing Fe Ions with Batch Process. J. Tek. Kim. 2008(15): 22–26.
  • 17. Suzuki M. Adsorption Engineering. Tokyo: Kodansha Ltd., 1990.
  • 18. Amghouz Z, Ancín-Azpilicueta C, Burusco KK, García JR, Khainakov SA, Luquin A, Nieto R, & Garrido JJ. Biogenic amines in wine: Individual and competitive adsorption on a modified zirconium phosphate. Microporous Mesoporous Mater. 2014(197): 130–139. Available from: <URL>.
  • 19. Buhani and Suharso. Modifikasi silika dengan 3-aminopropiltrimetoksisilan melalui proses sol gel untuk adsorpsi ion Cd(II) dari larutan. J.Sains MIPA. 2010(16):177–183.
  • 20. Naat JN, Lapailaka T, Sabarudin A, and Tjahjanto RT. Synthesis And Characterization of Chitosan-Silica Hybrid Adsorbent From The Extraction Of Timor-East Nusa Tenggara Island Silica and its App. Rasayan J. Chem. 2018(11):1467–1476.
  • 21. Nurhajawarsi N, Rafi M, Syafitri UD, and Rohaeti E. L-Histidine-Modified Silica from Rice Husk and Optimization of Adsorption Condition for Extractive Concentration of Pb(II). J. Pure Appl. Chem. Res. 2018(7):198–208.
  • 22. Alswieleh AM, Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release (2020). Available from: <URL>.
  • 23. Mallakpour S and Nazari HY. The influence of bovine serum albumin-modified silica on the physical-chemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason. Sonochem. 2017(41):1–10. Available from: <URL>.
  • 24. Elzoghby AO, Samy WM, and Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release. 2012(161):38–49. Available from: <URL>.
  • 25. Choi JS, and Meghani N. Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloids Surfaces B Biointerfaces. 2016(145): 653–661. Available from: <URL>.
  • 26. Ragadhita R, Bayu A, and Nandiyanto D. Indonesian Journal of Science & Technology How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations. 2021(6): 205–234. Available from: <URL>.
  • 27. Xu J, Zhen C, Yilin Z, Lou. J. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water : Preparation, application, and mechanism. Chemosphere.2018(195):351–364. Available from: <URL>.
  • 28. Naat JN, Neolaka YAB, Lapailaka T, Triandi R, Sabarudin A, Darmokoesoemo H, Kusuma HS. Adsorption of Cu(II) and Pb(II) using Silica@Mercapto(HS@M) hybrid Adsorbent Synthesized from Silica of Takari Sand: Optimization of Parameters and Kinetics, Rasayan J Chem. 2021(14):550–560. Available from: <URL>.
  • 29. Aderonke AO, Abimbola BA, Ifeanyi E, Omotayo SA, Oluwagbemiga SA, and Oladotun WM. Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. African J. Pure Appl. Chem. 2014(8):147–161. Available from: <URL>.
  • 30. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics J. Mater. Res. Technol. 2020(9):6544–6556. Available from: <URL>.
  • 31. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Mango AW, Iqbal M, Darmokoesoemo H, B. Widyaningrum WA, Kusuma HS. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. J. Mater. Res. Technol. 2022(9): 2896–2909. Available from: <URL>.
  • 32. Kali A, Dehmani Y, and Loulidi I. Study of the adsorption properties of an almond shell in the elimination of methylene blue in an aquatic. 2022(3): 509–522. Available from: <URL>.
  • 33. Ayawei N, Ebelegi AN, and Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017: 1-11. Available from: <URL>.
  • 34. Binaeian E, Mottaghizad M, Hoseinpour AK, and Babaee AS. Bovine serum albumin adsorption by Bi-functionalized HMS, nitrilotriacetic acid-amine modified hexagonal mesoporous silicate. Solid State Sci. 2020(103): 106194. Available from: <URL>.
  • 35. Al-Ghouti MA and Da'ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020(393):122383. Available from: <URL>.
  • 36. Kouar J, Bellahcen TO, El Amrani A, and Cherif A. Removal of Eriochrome Black T dye from aqueous solutions by using nano- crystalline calcium phosphate tricalcic apatitic. 2021(4):715–727. Available from: <URL>.
  • 37. Naat JN, Neolaka YAB, Lawa Y, Wolu CL, Lestarani D, Sugiarti S, Iswantini D. Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent. AIMS Materials Science. 2022(9): 36-55. Available from: <URL>.
  • 38. Kulik TV, Vlasova NN, Palyanytsya BB, Markitan OV, and Golovkova LP. Spectroscopic study of biogenic amine complexes formed at fumed silica surface. J. Colloid Interface Sci. 2010(351): 515–522. Available from: <URL>.
  • 39. Makara K, Misawa K, Miyazaki M, Mitsuda H, Ishiuchi S, and Fujii M. Vibrational Signature of the Conformers in Tyramine Studied by IR Dip and Dispersed Fluorescence Spectroscopies. J. Phys. Chem. 2008(112):13463–13469. Available from: <URL>.
  • 40. Timin A, Rumyantsev E, and Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption. J. Non. Cryst. Solids. 2014(385): 81–88. Available from: <URL>.
  • 41. Yoon I, Seo K, Lee S, Lee Y, and Kim B. Conformational Study of Tyramine and Its Water Clusters by Laser Spectroscopy. J. Phys. Chem. 2007(111):1800–1807. Available from: <URL>.
  • 42. Chang P, Jiang W, and Li Z. Mechanism of tyramine adsorption on Ca-montmorillonite. Sci. Total Environ.2018(642):198–207. Available from: <URL>.
  • 43. Malferrari D, Bernini F, Tavanti F, Tuccio L, and Pedone A. Experimental and Molecular Dynamics Investigation Proves That Montmorillonite Traps the Biogenic Amines Histamine and Tyramine. J. Phys. Chem. 2017(121). Available from: <URL>.
  • 44. Al-ghouti MA and Da DA. Guidelines for the use and interpretation of adsorption isotherm models : A review. J. Hazard. Mater. 2019(393): 122383. Available from: <URL>.
  • 45. Tsai C, Chang W, Saikia D, Wu C, and Kao H. Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Elsevier B.V. 2015: 236-248. Available from: <URL>.
  • 46. Foo KY and Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010(156):2–10. Available from: <URL>.
  • 47. Chaudhry SA, Khan TA, and Ali I. Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. Mol. Liq., 2017(236):320–330. Available from: <URL>.
  • 48. Maleki MS, Moradi O, and Tahmasebi S. Adsorption of albumin by gold nanoparticles: Equilibrium and thermodynamics studies. Arab. J. Chem. 2015(10):S491–S502. Available from: <URL>.
Year 2023, , 929 - 940, 11.11.2023
https://doi.org/10.18596/jotcsa.1244774

Abstract

References

  • 1. Finberg JPM & Gillman K. Selective inhibitors of monoamine oxidase type B and the cheese effect. International review of neurobiology. 2011(100):169–190. Available from: <URL>.
  • 2. McCabe-Sellers BJ, Staggs CG & Bogle ML. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. Journal of Food Composition and Analysis. 2006(19). Available from: <URL>.
  • 3. Halász A, Baráth Á, Simon-Sarkadi L, & Holzapfel W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994(5):42–49. Available from: <URL>.
  • 4. Santos MHS. Biogenic amines: their importance in foods. 1996 (29):213–231. Available from: <URL>.
  • 5. Andersen G, Marcinek P, Sulzinger N, Schieberle P, and Krautwurst D. Food sources and biomolecular targets of tyramine. Nutrition reviews. 2019(77): 107–115. Available from: <URL>.
  • 6. Spano G, Russo P, Lonfaud F. Biogenic amines in fermented foods. Eur J Clin Nutr 64 (Suppl 3), 2010: S95–S100. Available from: <URL>.
  • 7. Linares DM, del Rio B, Redruello B, Ladero V, Martin MC, Fernandez M. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food chemistry, 2016(197):658–663. Available from: <URL>.
  • 8. Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D. Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci. Technol., 2013(30): 38-55. Available from: <URL>.
  • 9. Redruello B, Ladero V, Cuesta I, Álvarez-Buylla JR, Martín MC, Fernández M, Alvarez MA. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem. 2013(13): 1029-1035. Available from: <URL>.
  • 10. Jastrzębska, A. A comparative study for determination of biogenic amines in meat samples by capillary isotachophoresis with two electrolyte systems. Eur Food Res Technol 2012(235): 563–572. Available from: <URL>.
  • 11. Romano A, Klebanowski H, Guerche SL, Beneduce L, Spano G, Murat ML, Lucas P. Determination of biogenic amines in wine by thin-layer chromatography/densitometry, Food Chem. 2012(135): 1392-1396. Available from: <URL>.
  • 12. Vlasova NN, Markitan OV, and Golovkova LP. Adsorption of biogenic amines on albumin-modified silica surface. Colloid J. 2011(73): 24–27. Available from: <URL>.
  • 13. Sidorenko IG, Markitan OV, Vlasova NN, Zagorovskii GM, and Lobanov VV. The Adsorption of Biogenic Amines on Carbon Nanotubes. 2009(83): 1139–1142. Available from: <URL>.
  • 14. Chang PH, Jiang WT, and Li Z. Mechanism of tyramine adsorption on Ca-montmorillonite. Sci. Total Environ. 2018(642):198–207. Available from: <URL>.
  • 15. Naat J. Pb(II) Adsorption using Silica from Natural Sand of Takari-NTT. KOVALEN: Jurnal Riset Kimia. 2022(8): 266-279. Available from: <URL>.
  • 16. Asip F, Mardhiah R, and Husna. Eggshell Effectiveness Test in Adsorbing Fe Ions with Batch Process. J. Tek. Kim. 2008(15): 22–26.
  • 17. Suzuki M. Adsorption Engineering. Tokyo: Kodansha Ltd., 1990.
  • 18. Amghouz Z, Ancín-Azpilicueta C, Burusco KK, García JR, Khainakov SA, Luquin A, Nieto R, & Garrido JJ. Biogenic amines in wine: Individual and competitive adsorption on a modified zirconium phosphate. Microporous Mesoporous Mater. 2014(197): 130–139. Available from: <URL>.
  • 19. Buhani and Suharso. Modifikasi silika dengan 3-aminopropiltrimetoksisilan melalui proses sol gel untuk adsorpsi ion Cd(II) dari larutan. J.Sains MIPA. 2010(16):177–183.
  • 20. Naat JN, Lapailaka T, Sabarudin A, and Tjahjanto RT. Synthesis And Characterization of Chitosan-Silica Hybrid Adsorbent From The Extraction Of Timor-East Nusa Tenggara Island Silica and its App. Rasayan J. Chem. 2018(11):1467–1476.
  • 21. Nurhajawarsi N, Rafi M, Syafitri UD, and Rohaeti E. L-Histidine-Modified Silica from Rice Husk and Optimization of Adsorption Condition for Extractive Concentration of Pb(II). J. Pure Appl. Chem. Res. 2018(7):198–208.
  • 22. Alswieleh AM, Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release (2020). Available from: <URL>.
  • 23. Mallakpour S and Nazari HY. The influence of bovine serum albumin-modified silica on the physical-chemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason. Sonochem. 2017(41):1–10. Available from: <URL>.
  • 24. Elzoghby AO, Samy WM, and Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release. 2012(161):38–49. Available from: <URL>.
  • 25. Choi JS, and Meghani N. Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloids Surfaces B Biointerfaces. 2016(145): 653–661. Available from: <URL>.
  • 26. Ragadhita R, Bayu A, and Nandiyanto D. Indonesian Journal of Science & Technology How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations. 2021(6): 205–234. Available from: <URL>.
  • 27. Xu J, Zhen C, Yilin Z, Lou. J. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water : Preparation, application, and mechanism. Chemosphere.2018(195):351–364. Available from: <URL>.
  • 28. Naat JN, Neolaka YAB, Lapailaka T, Triandi R, Sabarudin A, Darmokoesoemo H, Kusuma HS. Adsorption of Cu(II) and Pb(II) using Silica@Mercapto(HS@M) hybrid Adsorbent Synthesized from Silica of Takari Sand: Optimization of Parameters and Kinetics, Rasayan J Chem. 2021(14):550–560. Available from: <URL>.
  • 29. Aderonke AO, Abimbola BA, Ifeanyi E, Omotayo SA, Oluwagbemiga SA, and Oladotun WM. Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. African J. Pure Appl. Chem. 2014(8):147–161. Available from: <URL>.
  • 30. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics J. Mater. Res. Technol. 2020(9):6544–6556. Available from: <URL>.
  • 31. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Mango AW, Iqbal M, Darmokoesoemo H, B. Widyaningrum WA, Kusuma HS. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. J. Mater. Res. Technol. 2022(9): 2896–2909. Available from: <URL>.
  • 32. Kali A, Dehmani Y, and Loulidi I. Study of the adsorption properties of an almond shell in the elimination of methylene blue in an aquatic. 2022(3): 509–522. Available from: <URL>.
  • 33. Ayawei N, Ebelegi AN, and Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017: 1-11. Available from: <URL>.
  • 34. Binaeian E, Mottaghizad M, Hoseinpour AK, and Babaee AS. Bovine serum albumin adsorption by Bi-functionalized HMS, nitrilotriacetic acid-amine modified hexagonal mesoporous silicate. Solid State Sci. 2020(103): 106194. Available from: <URL>.
  • 35. Al-Ghouti MA and Da'ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020(393):122383. Available from: <URL>.
  • 36. Kouar J, Bellahcen TO, El Amrani A, and Cherif A. Removal of Eriochrome Black T dye from aqueous solutions by using nano- crystalline calcium phosphate tricalcic apatitic. 2021(4):715–727. Available from: <URL>.
  • 37. Naat JN, Neolaka YAB, Lawa Y, Wolu CL, Lestarani D, Sugiarti S, Iswantini D. Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent. AIMS Materials Science. 2022(9): 36-55. Available from: <URL>.
  • 38. Kulik TV, Vlasova NN, Palyanytsya BB, Markitan OV, and Golovkova LP. Spectroscopic study of biogenic amine complexes formed at fumed silica surface. J. Colloid Interface Sci. 2010(351): 515–522. Available from: <URL>.
  • 39. Makara K, Misawa K, Miyazaki M, Mitsuda H, Ishiuchi S, and Fujii M. Vibrational Signature of the Conformers in Tyramine Studied by IR Dip and Dispersed Fluorescence Spectroscopies. J. Phys. Chem. 2008(112):13463–13469. Available from: <URL>.
  • 40. Timin A, Rumyantsev E, and Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption. J. Non. Cryst. Solids. 2014(385): 81–88. Available from: <URL>.
  • 41. Yoon I, Seo K, Lee S, Lee Y, and Kim B. Conformational Study of Tyramine and Its Water Clusters by Laser Spectroscopy. J. Phys. Chem. 2007(111):1800–1807. Available from: <URL>.
  • 42. Chang P, Jiang W, and Li Z. Mechanism of tyramine adsorption on Ca-montmorillonite. Sci. Total Environ.2018(642):198–207. Available from: <URL>.
  • 43. Malferrari D, Bernini F, Tavanti F, Tuccio L, and Pedone A. Experimental and Molecular Dynamics Investigation Proves That Montmorillonite Traps the Biogenic Amines Histamine and Tyramine. J. Phys. Chem. 2017(121). Available from: <URL>.
  • 44. Al-ghouti MA and Da DA. Guidelines for the use and interpretation of adsorption isotherm models : A review. J. Hazard. Mater. 2019(393): 122383. Available from: <URL>.
  • 45. Tsai C, Chang W, Saikia D, Wu C, and Kao H. Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Elsevier B.V. 2015: 236-248. Available from: <URL>.
  • 46. Foo KY and Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010(156):2–10. Available from: <URL>.
  • 47. Chaudhry SA, Khan TA, and Ali I. Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. Mol. Liq., 2017(236):320–330. Available from: <URL>.
  • 48. Maleki MS, Moradi O, and Tahmasebi S. Adsorption of albumin by gold nanoparticles: Equilibrium and thermodynamics studies. Arab. J. Chem. 2015(10):S491–S502. Available from: <URL>.
There are 48 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section RESEARCH ARTICLES
Authors

Johnson Naat 0000-0002-0257-736X

Yantus A. B. Neolaka 0000-0002-2809-5019

Yosep Lawa 0000-0001-8737-2306

Petrus Noning 0000-0003-0788-7495

Ayu W.m Menno 0000-0001-5499-669X

Rosnita Rosnita 0000-0003-2797-8132

Fransiskus B.o. Weo 0000-0002-1051-4123

Dewi Lestarani 0000-0001-5103-1382

Sri Sugiarti 0000-0002-5828-1947

Diah Iswantini 0000-0003-1113-2722

Publication Date November 11, 2023
Submission Date January 31, 2023
Acceptance Date July 10, 2023
Published in Issue Year 2023

Cite

Vancouver Naat J, Neolaka YAB, Lawa Y, Noning P, Menno AW, Rosnita R, Weo FB, Lestarani D, Sugiarti S, Iswantini D. Tyramine Adsorption Using the Modification of Takari Natural Sand-Based Silica with Bovine Serum Albumin (BSA). JOTCSA. 2023;10(4):929-40.