Research Article
BibTex RIS Cite

Comparative Analysis of Glycoform Profiles Between Biosimilar and Originator Monoclonal Antibodies by Liquid Chromatography–Mass Spectrometry

Year 2024, , 365 - 376, 04.02.2024
https://doi.org/10.18596/jotcsa.1298924

Abstract

Glycosylation is considered as a critical quality attribute for monoclonal antibodies (mAbs) and needs routine monitoring during production. This study aims to compare the glycoform profiles of biosimilar and four originator mAbs using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization-quadrupole time of flight-mass spectrometry (ESI/Q-TOF MS). The resultant mass spectrum showed that seven different glycoform pairs, including G0F–GN/G0, G0F–GN/G0F, G0F/G0F, G0F/G1F, G1F/G1F, G1F/G2F, and G2F/G2F were identified via intact mass analysis for all tested mAb samples. The correct identification of each glycoform pair was achieved by comparing the observed mass with its theoretical mass using high-resolution mass spectrometry data (with mass accuracies of less than 100 ppm). The most abundant paired glycoforms detected at the intact protein level are G0F/G0F and G0F/G1F, with relative abundance ranges of 38.45 – 43.43% and 19.32 – 22.20%, respectively. The obtained data demonstrated that biosimilar and originators have the same types of glycoform pairs, and the relative abundances of each pair were comparable among biosimilar and four originator mAb samples. Additionally, the reduced mass analysis revealed that five different glycans (G0F–GN, G0, G0F, G1F, and G2F) were attached to the heavy chain of the mAb, and the relative abundance of G0F ranged from 75.21 to 77.90%. The detected mass accuracies for reduced mass analysis were below 25 ppm. The results of the intact and reduced mass analyses showed that the biosimilar is similar to its originator in terms of glycoform percentages and molecular masses.

Supporting Institution

Turgut Pharmaceuticals

Thanks

The author acknowledges the Chairman of the Board and General Manager of Turgut Pharmaceuticals, Tunç Turgut, for the support of the study.

References

  • 1. Liu JKH. The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann Med Surg [Internet]. 2014 Dec 1;3(4):113–6. Available from: <URL>.
  • 2. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov [Internet]. 2003 Jan 1;2(1):52–62. Available from: <URL>.
  • 3. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer [Internet]. 2012 Apr 22;12(4):278–87. Available from: <URL>.
  • 4. Liu H, Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, et al. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs [Internet]. 2014 Sep 3;6(5):1145–54. Available from: <URL>.
  • 5. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of Monoclonal Antibodies. J Pharm Sci [Internet]. 2008 Jul 1;97(7):2426–47. Available from: <URL>.
  • 6. Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol [Internet]. 2014 Dec 6;34(4):281–99. Available from: <URL>.
  • 7. Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci [Internet]. 2009 Jul 1;30(7):356–62. Available from: <URL>.
  • 8. Sinclair AM, Elliott S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci [Internet]. 2005 Aug 1;94(8):1626–35. Available from: <URL>.
  • 9. Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev [Internet]. 2009 Jan 20;28(1):147–76. Available from: <URL>.
  • 10. Chen G, Warrack BM, Goodenough AK, Wei H, Wang-Iverson DB, Tymiak AA. Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today [Internet]. 2011 Jan 1;16(1–2):58–64. Available from: <URL>.
  • 11. Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem [Internet]. 2006 Jan 1;348(1):24–39. Available from: <URL>.
  • 12. Beck A, Sanglier-Cianférani S, Van Dorsselaer A. Biosimilar, Biobetter, and Next Generation Antibody Characterization by Mass Spectrometry. Anal Chem [Internet]. 2012 Jun 5;84(11):4637–46. Available from: <URL>.
  • 13. Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A [Internet]. 2014 Mar 28;1335:81–103. Available from: <URL>.
  • 14. Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics [Internet]. 2018 May 4;15(5):431–49. Available from: <URL>.
  • 15. Sokolowska I, Mo J, Rahimi Pirkolachahi F, McVean C, Meijer LAT, Switzar L, et al. Implementation of a High-Resolution Liquid Chromatography–Mass Spectrometry Method in Quality Control Laboratories for Release and Stability Testing of a Commercial Antibody Product. Anal Chem [Internet]. 2020 Feb 4;92(3):2369–73. Available from: <URL>.
  • 16. Olivova P, Chen W, Chakraborty AB, Gebler JC. Determination of N‐glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion‐mobility time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom [Internet]. 2008 Jan 15;22(1):29–40. Available from: <URL>.
  • 17. Sinha S, Pipes G, Topp EM, Bondarenko P V., Treuheit MJ, Gadgil HS. Comparison of LC and LC/MS methods for quantifying N -glycosylation in recombinant IgGs. J Am Soc Mass Spectrom [Internet]. 2008 Nov 1;19(11):1643–54. Available from: <URL>.
  • 18. Damen CWN, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, et al. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom [Internet]. 2009 Nov 1;20(11):2021–33. Available from: <URL>.
  • 19. Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun [Internet]. 2013 Dec 12;49(6):538–48. Available from: <URL>.
  • 20. Gomes RA, Almeida C, Correia C, Guerreiro A, Simplício AL, Abreu IA, et al. Exploring the analytical power of the QTOF MS platform to assess monoclonal antibodies quality attributes. Banoub J, editor. PLoS One [Internet]. 2019 Jul 10;14(7):e0219156. Available from: <URL>.
  • 21. Yu L, Remmele RL, He B. Identification of N‐terminal modification for recombinant monoclonal antibody light chain using partial reduction and quadrupole time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom [Internet]. 2006 Dec 30;20(24):3674–80. Available from: <URL>.
  • 22. Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, et al. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. Rapid Commun Mass Spectrom [Internet]. 2019 Jan 15;33(1):31–40. Available from: <URL>.
  • 23. Schilling M, Feng P, Sosic Z, Traviglia SL. Development and validation of a platform reduced intact mass method for process monitoring of monoclonal antibody glycosylation during routine manufacturing. Bioengineered [Internet]. 2020 Jan 1;11(1):1301–12. Available from: <URL>.
  • 24. Lanter C, Lev M, Cao L, Loladze V. Rapid Intact mass based multi-attribute method in support of mAb upstream process development. J Biotechnol [Internet]. 2020 May 20;314–315:63–70. Available from: <URL>.
  • 25. Martelet A, Garrigue V, Zhang Z, Genet B, Guttman A. Multi-attribute method based characterization of antibody drug conjugates (ADC) at the intact and subunit levels. J Pharm Biomed Anal [Internet]. 2021 Jul 15;201:114094. Available from: <URL>.
  • 26. Naumann L, Schlossbauer P, Klingler F, Hesse F, Otte K, Neusüß C. High‐throughput glycosylation analysis of intact monoclonal antibodies by mass spectrometry coupled with capillary electrophoresis and liquid chromatography. J Sep Sci [Internet]. 2022 Jun 27;45(12):2034–44. Available from: <URL>.
  • 27. Haga Y, Yamada M, Fujii R, Saichi N, Yokokawa T, Hama T, et al. Fast and Ultrasensitive Glycoform Analysis by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Anal Chem [Internet]. 2022 Nov 22;94(46):15948–55. Available from: <URL>.
  • 28. Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, et al. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal [Internet]. 2017 Jun 5;140:239–51. Available from: <URL>.
  • 29. Hutterer KM, Polozova A, Kuhns S, McBride HJ, Cao X, Liu J. Assessing Analytical and Functional Similarity of Proposed Amgen Biosimilar ABP 980 to Trastuzumab. BioDrugs [Internet]. 2019 Jun 10;33(3):321–33. Available from: <URL>.
  • 30. Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs [Internet]. 2018 May 19;10(4):678–91. Available from: <URL>.
  • 31. Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, et al. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs [Internet]. 2013 Sep 27;5(5):699–710. Available from: <URL>.
  • 32. Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, et al. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs [Internet]. 2010 Jul 27;2(4):379–94. Available from: <URL>.
  • 33. Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab. BioDrugs [Internet]. 2016 Aug 26 [cited 2023 Dec 21];30(4):321–38. Available from: <URL>.
Year 2024, , 365 - 376, 04.02.2024
https://doi.org/10.18596/jotcsa.1298924

Abstract

References

  • 1. Liu JKH. The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann Med Surg [Internet]. 2014 Dec 1;3(4):113–6. Available from: <URL>.
  • 2. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov [Internet]. 2003 Jan 1;2(1):52–62. Available from: <URL>.
  • 3. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer [Internet]. 2012 Apr 22;12(4):278–87. Available from: <URL>.
  • 4. Liu H, Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, et al. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs [Internet]. 2014 Sep 3;6(5):1145–54. Available from: <URL>.
  • 5. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of Monoclonal Antibodies. J Pharm Sci [Internet]. 2008 Jul 1;97(7):2426–47. Available from: <URL>.
  • 6. Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol [Internet]. 2014 Dec 6;34(4):281–99. Available from: <URL>.
  • 7. Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci [Internet]. 2009 Jul 1;30(7):356–62. Available from: <URL>.
  • 8. Sinclair AM, Elliott S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci [Internet]. 2005 Aug 1;94(8):1626–35. Available from: <URL>.
  • 9. Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev [Internet]. 2009 Jan 20;28(1):147–76. Available from: <URL>.
  • 10. Chen G, Warrack BM, Goodenough AK, Wei H, Wang-Iverson DB, Tymiak AA. Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today [Internet]. 2011 Jan 1;16(1–2):58–64. Available from: <URL>.
  • 11. Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem [Internet]. 2006 Jan 1;348(1):24–39. Available from: <URL>.
  • 12. Beck A, Sanglier-Cianférani S, Van Dorsselaer A. Biosimilar, Biobetter, and Next Generation Antibody Characterization by Mass Spectrometry. Anal Chem [Internet]. 2012 Jun 5;84(11):4637–46. Available from: <URL>.
  • 13. Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A [Internet]. 2014 Mar 28;1335:81–103. Available from: <URL>.
  • 14. Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics [Internet]. 2018 May 4;15(5):431–49. Available from: <URL>.
  • 15. Sokolowska I, Mo J, Rahimi Pirkolachahi F, McVean C, Meijer LAT, Switzar L, et al. Implementation of a High-Resolution Liquid Chromatography–Mass Spectrometry Method in Quality Control Laboratories for Release and Stability Testing of a Commercial Antibody Product. Anal Chem [Internet]. 2020 Feb 4;92(3):2369–73. Available from: <URL>.
  • 16. Olivova P, Chen W, Chakraborty AB, Gebler JC. Determination of N‐glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion‐mobility time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom [Internet]. 2008 Jan 15;22(1):29–40. Available from: <URL>.
  • 17. Sinha S, Pipes G, Topp EM, Bondarenko P V., Treuheit MJ, Gadgil HS. Comparison of LC and LC/MS methods for quantifying N -glycosylation in recombinant IgGs. J Am Soc Mass Spectrom [Internet]. 2008 Nov 1;19(11):1643–54. Available from: <URL>.
  • 18. Damen CWN, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, et al. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom [Internet]. 2009 Nov 1;20(11):2021–33. Available from: <URL>.
  • 19. Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun [Internet]. 2013 Dec 12;49(6):538–48. Available from: <URL>.
  • 20. Gomes RA, Almeida C, Correia C, Guerreiro A, Simplício AL, Abreu IA, et al. Exploring the analytical power of the QTOF MS platform to assess monoclonal antibodies quality attributes. Banoub J, editor. PLoS One [Internet]. 2019 Jul 10;14(7):e0219156. Available from: <URL>.
  • 21. Yu L, Remmele RL, He B. Identification of N‐terminal modification for recombinant monoclonal antibody light chain using partial reduction and quadrupole time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom [Internet]. 2006 Dec 30;20(24):3674–80. Available from: <URL>.
  • 22. Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, et al. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. Rapid Commun Mass Spectrom [Internet]. 2019 Jan 15;33(1):31–40. Available from: <URL>.
  • 23. Schilling M, Feng P, Sosic Z, Traviglia SL. Development and validation of a platform reduced intact mass method for process monitoring of monoclonal antibody glycosylation during routine manufacturing. Bioengineered [Internet]. 2020 Jan 1;11(1):1301–12. Available from: <URL>.
  • 24. Lanter C, Lev M, Cao L, Loladze V. Rapid Intact mass based multi-attribute method in support of mAb upstream process development. J Biotechnol [Internet]. 2020 May 20;314–315:63–70. Available from: <URL>.
  • 25. Martelet A, Garrigue V, Zhang Z, Genet B, Guttman A. Multi-attribute method based characterization of antibody drug conjugates (ADC) at the intact and subunit levels. J Pharm Biomed Anal [Internet]. 2021 Jul 15;201:114094. Available from: <URL>.
  • 26. Naumann L, Schlossbauer P, Klingler F, Hesse F, Otte K, Neusüß C. High‐throughput glycosylation analysis of intact monoclonal antibodies by mass spectrometry coupled with capillary electrophoresis and liquid chromatography. J Sep Sci [Internet]. 2022 Jun 27;45(12):2034–44. Available from: <URL>.
  • 27. Haga Y, Yamada M, Fujii R, Saichi N, Yokokawa T, Hama T, et al. Fast and Ultrasensitive Glycoform Analysis by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Anal Chem [Internet]. 2022 Nov 22;94(46):15948–55. Available from: <URL>.
  • 28. Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, et al. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal [Internet]. 2017 Jun 5;140:239–51. Available from: <URL>.
  • 29. Hutterer KM, Polozova A, Kuhns S, McBride HJ, Cao X, Liu J. Assessing Analytical and Functional Similarity of Proposed Amgen Biosimilar ABP 980 to Trastuzumab. BioDrugs [Internet]. 2019 Jun 10;33(3):321–33. Available from: <URL>.
  • 30. Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs [Internet]. 2018 May 19;10(4):678–91. Available from: <URL>.
  • 31. Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, et al. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs [Internet]. 2013 Sep 27;5(5):699–710. Available from: <URL>.
  • 32. Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, et al. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs [Internet]. 2010 Jul 27;2(4):379–94. Available from: <URL>.
  • 33. Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab. BioDrugs [Internet]. 2016 Aug 26 [cited 2023 Dec 21];30(4):321–38. Available from: <URL>.
There are 33 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section RESEARCH ARTICLES
Authors

Ahmet Emin Atik 0000-0001-6871-6740

Publication Date February 4, 2024
Submission Date May 18, 2023
Acceptance Date December 1, 2023
Published in Issue Year 2024

Cite

Vancouver Atik AE. Comparative Analysis of Glycoform Profiles Between Biosimilar and Originator Monoclonal Antibodies by Liquid Chromatography–Mass Spectrometry. JOTCSA. 2024;11(1):365-76.