Research Article
BibTex RIS Cite

Preparation of PLGA-PEG/Hydroxyapatite Composites via Simple Methodology of Film Formation and Assessment of Their Structural, Thermal, and Biological Features

Year 2023, , 1123 - 1132, 11.11.2023
https://doi.org/10.18596/jotcsa.1313562

Abstract

This study aimed to develop polymeric composite films suitable for applications in the field of bone tissue engineering. The preparation of PLGA-PEG/HAP composite films was achieved using a simple methodology, including mixing, sonication, and casting-drying stages. Characterization analyses, including FTIR, SEM, TGA-DSC, and XRD, were conducted to assess the properties of the composite films. The results showed that the PEG polymer decreased the glass transition temperature of the composite, while the HAP did not change. Further, weight remaining (%) values of HAP, PLGA-PEG, and PLGA-PEG/HAP were found as 94.04, 88.28, and 90.57, respectively. Thus, it can be concluded that HAP improves the thermal stability of PLGA-PEG. The outcomes of the analysis, encompassing the evaluation of physical, morphological, and thermal properties, demonstrate that the composite structure comprising PLGA and PEG polymers along with HAP ceramic material may attain the intended quality. Moreover, fluorescence microscopy was employed to visualize the interaction between cells and the composite films following DAPI staining to evaluate cell adhesion and proliferation on the PLGA-PEG/HAP composite films. PLGA-PEG/HAP composite films have no adverse effects on cells, such as toxicity, and they have also exhibited a favorable influence on cell proliferation, supporting an augmentation in cellular growth and adhesion. Overall, the results indicate that the synthesized PLGA-PEG/HAP composite films may hold the potential to serve as a promising candidate for applications in the field of bone tissue engineering.

References

  • 1. Ozder MN, Ciftci F, Rencuzogullari O, Arisan ED, Ustündag CB. In situ synthesis and cell line studies of nano-hydroxyapatite/graphene oxide composite materials for bone support applications. Ceram Int [Internet]. 2023 May 1;49(9):14791–803. Available from: <URL>.
  • 2. Yuan B, Chen H, Zhao R, Deng X, Chen G, Yang X, et al. Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioact Mater [Internet]. 2022 Dec 1;18:354–67. Available from: <URL>.
  • 3. Taylor EC, Fitzpatrick CE, Thompson SE, Justice SB. Acute Traumatic Spinal Cord Injury. Adv Emerg Nurs J [Internet]. 2022 Oct 1;44(4):272–80. Available from: <URL>.
  • 4. Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, et al. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res [Internet]. 2022 Nov 22;26(1):63. Available from: <URL>.
  • 5. Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, et al. Spinal cord conduits for spinal cord injury regeneration. Eng Regen [Internet]. 2023 Mar 1;4(1):68–80. Available from: <URL>.
  • 6. Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res Part B Appl Biomater [Internet]. 2023 Mar 10;111(3):701–16. Available from: <URL>.
  • 7. Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater [Internet]. 2023 Jan;19:511–37. Available from: <URL>.
  • 8. Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, et al. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. Int J Mol Sci [Internet]. 2022 May 23;23(10):5831. Available from: <URL>.
  • 9. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) [Internet]. 2011 Aug 26;3(3):1377–97. Available from: <URL>.
  • 10. Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration [Internet]. 2022 Oct 21;2(5):20210082. Available from: <URL>.
  • 11. Wei J, Yan Y, Gao J, Li Y, Wang R, Wang J, et al. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Biomater Adv [Internet]. 2022 Feb;133:112618. Available from: <URL>.
  • 12. Shabani Z, Rahbarghazi R, Karimipour M, Ghadiri T, Salehi R, Sadigh‐Eteghad S, et al. Transplantation of bioengineered Reelin‐loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med [Internet]. 2022 Jan 29;7(1):e10264. Available from: <URL>.
  • 13. Lin C-C, Anseth KS. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm Res [Internet]. 2009 Mar 18;26(3):631–43. Available from: <URL>.
  • 14. Mikhail AS, Ranger JJ, Liu L, Longenecker R, Thompson DB, Sheardown HD, et al. Rapid and Efficient Assembly of Functional Silicone Surfaces Protected by PEG: Cell Adhesion to Peptide-Modified PDMS. J Biomater Sci Polym Ed [Internet]. 2010 Jan 2;21(6–7):821–42. Available from: <URL>.
  • 15. Wang P, Wang H, Ma K, Wang S, Yang C, Mu N, et al. Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair. RSC Adv [Internet]. 2020;10(11):6306–14. Available from: <URL>.
  • 16. Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics [Internet]. 2020;10(20):8996–9031. Available from: <URL>.
  • 17. Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci [Internet]. 2022 Aug 27;23(17):9721. Available from: <URL>.
  • 18. Jianfei H, Fuke W, Guiran Y, Xinyu L, Di J, Dejian L. Application advantages of hydroxyapatite surface modification as a bone scaffold for tissue engineering. Chinese J Tissue Eng Res [Internet]. 2022 Apr 8;26(10):1610–4. Available from: <URL>.
  • 19. Aminatun, Suciati T, Sari YW, Sari M, Alamsyah KA, Purnamasari W, et al. Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering. Int J Polym Mater Polym Biomater [Internet]. 2023 Mar 24;72(5):376–85. Available from: <URL>.
  • 20. Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics [Internet]. 2021 Sep 28;4(4):542–63. Available from: <URL>.
  • 21. Farag MM. Recent trends on biomaterials for tissue regeneration applications: review. J Mater Sci [Internet]. 2023 Jan 1;58(2):527–58. Available from: <URL>.
  • 22. Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos Part A Appl Sci Manuf [Internet]. 2017 Jan;92:97–107. Available from: <URL>.
  • 23. Yavuz E, Erdem R, Küçüksayan E, Akarsu E, Akarsu M. Preparation and Characterization of Polyethylene Glycol Functional Hydroxyapatite/Polycaprolactone Electrospun Biomembranes for Bone Tissue Engineering Applications. Fibers Polym [Internet]. 2021 May 27;22(5):1274–84. Available from: <URL>.
  • 24. dos Santos VI, Merlini C, Aragones Á, Cesca K, Fredel MC. In vitro evaluation of bilayer membranes of PLGA/hydroxyapatite/β-tricalcium phosphate for guided bone regeneration. Mater Sci Eng C [Internet]. 2020 Jul;112:110849. Available from: <URL>.
  • 25. Álvarez-Suarez AS, López-Maldonado EA, Graeve OA, Martinez-Pallares F, Gómez-Pineda LE, Oropeza-Guzmán MT, et al. Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering. J Polym Eng [Internet]. 2017 Nov 27;37(9):943–51. Available from: <URL>.
  • 26. Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B [Internet]. 2021;9(33):6691–702. Available from: <URL>.
  • 27. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater [Internet]. 2007 Sep;23(9):1120–8. Available from: <URL>.
  • 28. Lee JB, Lee SH, Yu SM, Park J-C, Choi JB, Kim JK. PLGA scaffold incorporated with hydroxyapatite for cartilage regeneration. Surf Coatings Technol [Internet]. 2008 Aug;202(22–23):5757–61. Available from: <URL>.
  • 29. Qian J, Xu W, Yong X, Jin X, Zhang W. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Mater Sci Eng C [Internet]. 2014 Mar;36:95–101. Available from: <URL>.
  • 30. Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int [Internet]. 2018 Jun;44(8):9703–10. Available from: <URL>.
  • 31. Hassan M, Sulaiman M, Yuvaraju PD, Galiwango E, Rehman I ur, Al-Marzouqi AH, et al. Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. J Funct Biomater [Internet]. 2022 Jan 28;13(1):13. Available from: <URL>.
  • 32. Yuan B, Zhang Y, Wang Q, Ren G, Wang Y, Zhou S, et al. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis. Int J Pharm [Internet]. 2022 Nov;627:122225. Available from: <URL>.
  • 33. Liuyun J, Chengdong X, Lixin J, Lijuan X. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid. Mater Res Bull [Internet]. 2013 Oct;48(10):4186–90. Available from: <URL>.
  • 34. Chang P-C, Luo H-T, Lin Z-J, Tai W-C, Chang C-H, Chang Y-C, et al. Preclinical evaluation of a 3D-printed hydroxyapatite/poly(lactic-co-glycolic acid) scaffold for ridge augmentation. J Formos Med Assoc [Internet]. 2021 Apr;120(4):1100–7. Available from: <URL>.
  • 35. Jiang L, Li Y, Xiong C, Su S. Preparation and characterization of a novel degradable nano-hydroxyapatite/poly(lactic- co -glycolic) composite reinforced with bamboo fiber. Mater Sci Eng C [Internet]. 2017 Jun;75:1014–8. Available from: <URL>.
  • 36. Selvaraju S, Ramalingam S, Rao JR. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications. Colloids Surfaces B Biointerfaces [Internet]. 2018 Dec;172:734–42. Available from: <URL>.
  • 37. Zhu KJ, Xiangzhou L, Shilin Y. Preparation, characterization, and properties of polylactide (PLA)–poly(ethylene glycol) (PEG) copolymers: A potential drug carrier. J Appl Polym Sci [Internet]. 1990 Jan 5;39(1):1–9. Available from: <URL>.
  • 38. Pişkin E, Kaitian X, Denkbaş EB, Küçükyavuz Z. Novel PDLLA/PEG copolymer micelles as drug carriers. J Biomater Sci Polym Ed [Internet]. 1996 Jan 2;7(4):359–73. Available from: <URL>.
  • 39. Zheng F, Wang C, Huang K, Li J. Surface Adsorption in PEG/Hydroxyapatite and PEG/Dickite Composite Phase Change Materials. Energy & Fuels [Internet]. 2021 Jul 1;35(13):10850–9. Available from: <URL>.
  • 40. Xu XF. Preparation and In Vitro Degradation of PLGA/HA Composite Fiber Scaffolds by Electrospinning. Adv Mater Res [Internet]. 2012 Nov;591–593:982–8. Available from: <URL>.
  • 41. Vega E, Egea, Calpena, Espina, García. Role of hydroxypropyl-&amp;beta;-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA&amp;ndash;PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine [Internet]. 2012 Mar;2012(7):1357–71. Available from: <URL>.
  • 42. Park J-W, Hwang J-U, Back J-H, Jang S-W, Kim H-J, Kim P-S, et al. High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos Part B Eng [Internet]. 2019 Dec;178:107449. Available from: <URL>.
  • 43. Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci [Internet]. 1997 Nov 21;66(8):1495–505. Available from: <URL>.
  • 44. Nedaipour F, Bagheri H, Mohammadi S. “Polylactic acid-polyethylene glycol-hydroxyapatite composite” an efficient composition for interference screws. Nanocomposites [Internet]. 2020 Jul 2;6(3):99–110. Available from: <URL>.
  • 45. Ferri J, Gisbert I, García-Sanoguera D, Reig M, Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). J Compos Mater [Internet]. 2016 Dec 28;50(30):4189–98. Available from: <URL>.
  • 46. Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, et al. Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities. Pharm Res [Internet]. 2015 Feb 28;32:2713–6. Available from: <URL>.
  • 47. Cañas-Gutiérrez A, Toro L, Fornaguera C, Borrós S, Osorio M, Castro-Herazo C, et al. Biomineralization in Three-Dimensional Scaffolds Based on Bacterial Nanocellulose for Bone Tissue Engineering: Feature Characterization and Stem Cell Differentiation. Polymers (Basel) [Internet]. 2023 Apr 24;15(9):2012. Available from: <URL>.
  • 48. Yang X, Li Y, He W, Huang Q, Zhang R, Feng Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res Part A [Internet]. 2018 Nov 5;106(11):2863–70. Available from: <URL>.
  • 49. Zhao Z, Ma X, Ma J, Kang J, Zhang Y, Guo Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio [Internet]. 2022 Jan;13:100206. Available from: <URL>.
  • 50. Espitia-Quiroz LC, Fernández-Orjuela AL, Anaya-Sampayo LM, Acosta-Gómez AP, Sequeda-Castañeda LG, Gutiérrez-Prieto SJ, et al. Viability and Adhesion of Periodontal Ligament Fibroblasts on a Hydroxyapatite Scaffold Combined with Collagen, Polylactic Acid–Polyglycolic Acid Copolymer and Platelet-Rich Fibrin: A Preclinical Pilot Study. Dent J [Internet]. 2022 Sep 6;10(9):167. Available from: <URL>.
  • 51. Shahabi S, Najafi F, Majdabadi A, Hooshmand T, Haghbin Nazarpak M, Karimi B, et al. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite. Sci World J [Internet]. 2014;2014:420616. Available from: <URL>.
  • 52. Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, et al. Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. Sensebé L, editor. PLoS One [Internet]. 2015 Mar 24;10(3):e0117709. Available from: <URL>.
  • 53. Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics [Internet]. 2023 Jan 11;15(1):242. Available from: <URL>.
Year 2023, , 1123 - 1132, 11.11.2023
https://doi.org/10.18596/jotcsa.1313562

Abstract

References

  • 1. Ozder MN, Ciftci F, Rencuzogullari O, Arisan ED, Ustündag CB. In situ synthesis and cell line studies of nano-hydroxyapatite/graphene oxide composite materials for bone support applications. Ceram Int [Internet]. 2023 May 1;49(9):14791–803. Available from: <URL>.
  • 2. Yuan B, Chen H, Zhao R, Deng X, Chen G, Yang X, et al. Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioact Mater [Internet]. 2022 Dec 1;18:354–67. Available from: <URL>.
  • 3. Taylor EC, Fitzpatrick CE, Thompson SE, Justice SB. Acute Traumatic Spinal Cord Injury. Adv Emerg Nurs J [Internet]. 2022 Oct 1;44(4):272–80. Available from: <URL>.
  • 4. Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, et al. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res [Internet]. 2022 Nov 22;26(1):63. Available from: <URL>.
  • 5. Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, et al. Spinal cord conduits for spinal cord injury regeneration. Eng Regen [Internet]. 2023 Mar 1;4(1):68–80. Available from: <URL>.
  • 6. Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res Part B Appl Biomater [Internet]. 2023 Mar 10;111(3):701–16. Available from: <URL>.
  • 7. Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater [Internet]. 2023 Jan;19:511–37. Available from: <URL>.
  • 8. Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, et al. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. Int J Mol Sci [Internet]. 2022 May 23;23(10):5831. Available from: <URL>.
  • 9. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) [Internet]. 2011 Aug 26;3(3):1377–97. Available from: <URL>.
  • 10. Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration [Internet]. 2022 Oct 21;2(5):20210082. Available from: <URL>.
  • 11. Wei J, Yan Y, Gao J, Li Y, Wang R, Wang J, et al. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Biomater Adv [Internet]. 2022 Feb;133:112618. Available from: <URL>.
  • 12. Shabani Z, Rahbarghazi R, Karimipour M, Ghadiri T, Salehi R, Sadigh‐Eteghad S, et al. Transplantation of bioengineered Reelin‐loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med [Internet]. 2022 Jan 29;7(1):e10264. Available from: <URL>.
  • 13. Lin C-C, Anseth KS. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm Res [Internet]. 2009 Mar 18;26(3):631–43. Available from: <URL>.
  • 14. Mikhail AS, Ranger JJ, Liu L, Longenecker R, Thompson DB, Sheardown HD, et al. Rapid and Efficient Assembly of Functional Silicone Surfaces Protected by PEG: Cell Adhesion to Peptide-Modified PDMS. J Biomater Sci Polym Ed [Internet]. 2010 Jan 2;21(6–7):821–42. Available from: <URL>.
  • 15. Wang P, Wang H, Ma K, Wang S, Yang C, Mu N, et al. Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair. RSC Adv [Internet]. 2020;10(11):6306–14. Available from: <URL>.
  • 16. Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics [Internet]. 2020;10(20):8996–9031. Available from: <URL>.
  • 17. Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci [Internet]. 2022 Aug 27;23(17):9721. Available from: <URL>.
  • 18. Jianfei H, Fuke W, Guiran Y, Xinyu L, Di J, Dejian L. Application advantages of hydroxyapatite surface modification as a bone scaffold for tissue engineering. Chinese J Tissue Eng Res [Internet]. 2022 Apr 8;26(10):1610–4. Available from: <URL>.
  • 19. Aminatun, Suciati T, Sari YW, Sari M, Alamsyah KA, Purnamasari W, et al. Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering. Int J Polym Mater Polym Biomater [Internet]. 2023 Mar 24;72(5):376–85. Available from: <URL>.
  • 20. Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics [Internet]. 2021 Sep 28;4(4):542–63. Available from: <URL>.
  • 21. Farag MM. Recent trends on biomaterials for tissue regeneration applications: review. J Mater Sci [Internet]. 2023 Jan 1;58(2):527–58. Available from: <URL>.
  • 22. Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos Part A Appl Sci Manuf [Internet]. 2017 Jan;92:97–107. Available from: <URL>.
  • 23. Yavuz E, Erdem R, Küçüksayan E, Akarsu E, Akarsu M. Preparation and Characterization of Polyethylene Glycol Functional Hydroxyapatite/Polycaprolactone Electrospun Biomembranes for Bone Tissue Engineering Applications. Fibers Polym [Internet]. 2021 May 27;22(5):1274–84. Available from: <URL>.
  • 24. dos Santos VI, Merlini C, Aragones Á, Cesca K, Fredel MC. In vitro evaluation of bilayer membranes of PLGA/hydroxyapatite/β-tricalcium phosphate for guided bone regeneration. Mater Sci Eng C [Internet]. 2020 Jul;112:110849. Available from: <URL>.
  • 25. Álvarez-Suarez AS, López-Maldonado EA, Graeve OA, Martinez-Pallares F, Gómez-Pineda LE, Oropeza-Guzmán MT, et al. Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering. J Polym Eng [Internet]. 2017 Nov 27;37(9):943–51. Available from: <URL>.
  • 26. Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B [Internet]. 2021;9(33):6691–702. Available from: <URL>.
  • 27. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater [Internet]. 2007 Sep;23(9):1120–8. Available from: <URL>.
  • 28. Lee JB, Lee SH, Yu SM, Park J-C, Choi JB, Kim JK. PLGA scaffold incorporated with hydroxyapatite for cartilage regeneration. Surf Coatings Technol [Internet]. 2008 Aug;202(22–23):5757–61. Available from: <URL>.
  • 29. Qian J, Xu W, Yong X, Jin X, Zhang W. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Mater Sci Eng C [Internet]. 2014 Mar;36:95–101. Available from: <URL>.
  • 30. Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int [Internet]. 2018 Jun;44(8):9703–10. Available from: <URL>.
  • 31. Hassan M, Sulaiman M, Yuvaraju PD, Galiwango E, Rehman I ur, Al-Marzouqi AH, et al. Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. J Funct Biomater [Internet]. 2022 Jan 28;13(1):13. Available from: <URL>.
  • 32. Yuan B, Zhang Y, Wang Q, Ren G, Wang Y, Zhou S, et al. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis. Int J Pharm [Internet]. 2022 Nov;627:122225. Available from: <URL>.
  • 33. Liuyun J, Chengdong X, Lixin J, Lijuan X. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid. Mater Res Bull [Internet]. 2013 Oct;48(10):4186–90. Available from: <URL>.
  • 34. Chang P-C, Luo H-T, Lin Z-J, Tai W-C, Chang C-H, Chang Y-C, et al. Preclinical evaluation of a 3D-printed hydroxyapatite/poly(lactic-co-glycolic acid) scaffold for ridge augmentation. J Formos Med Assoc [Internet]. 2021 Apr;120(4):1100–7. Available from: <URL>.
  • 35. Jiang L, Li Y, Xiong C, Su S. Preparation and characterization of a novel degradable nano-hydroxyapatite/poly(lactic- co -glycolic) composite reinforced with bamboo fiber. Mater Sci Eng C [Internet]. 2017 Jun;75:1014–8. Available from: <URL>.
  • 36. Selvaraju S, Ramalingam S, Rao JR. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications. Colloids Surfaces B Biointerfaces [Internet]. 2018 Dec;172:734–42. Available from: <URL>.
  • 37. Zhu KJ, Xiangzhou L, Shilin Y. Preparation, characterization, and properties of polylactide (PLA)–poly(ethylene glycol) (PEG) copolymers: A potential drug carrier. J Appl Polym Sci [Internet]. 1990 Jan 5;39(1):1–9. Available from: <URL>.
  • 38. Pişkin E, Kaitian X, Denkbaş EB, Küçükyavuz Z. Novel PDLLA/PEG copolymer micelles as drug carriers. J Biomater Sci Polym Ed [Internet]. 1996 Jan 2;7(4):359–73. Available from: <URL>.
  • 39. Zheng F, Wang C, Huang K, Li J. Surface Adsorption in PEG/Hydroxyapatite and PEG/Dickite Composite Phase Change Materials. Energy & Fuels [Internet]. 2021 Jul 1;35(13):10850–9. Available from: <URL>.
  • 40. Xu XF. Preparation and In Vitro Degradation of PLGA/HA Composite Fiber Scaffolds by Electrospinning. Adv Mater Res [Internet]. 2012 Nov;591–593:982–8. Available from: <URL>.
  • 41. Vega E, Egea, Calpena, Espina, García. Role of hydroxypropyl-&amp;beta;-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA&amp;ndash;PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine [Internet]. 2012 Mar;2012(7):1357–71. Available from: <URL>.
  • 42. Park J-W, Hwang J-U, Back J-H, Jang S-W, Kim H-J, Kim P-S, et al. High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos Part B Eng [Internet]. 2019 Dec;178:107449. Available from: <URL>.
  • 43. Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci [Internet]. 1997 Nov 21;66(8):1495–505. Available from: <URL>.
  • 44. Nedaipour F, Bagheri H, Mohammadi S. “Polylactic acid-polyethylene glycol-hydroxyapatite composite” an efficient composition for interference screws. Nanocomposites [Internet]. 2020 Jul 2;6(3):99–110. Available from: <URL>.
  • 45. Ferri J, Gisbert I, García-Sanoguera D, Reig M, Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). J Compos Mater [Internet]. 2016 Dec 28;50(30):4189–98. Available from: <URL>.
  • 46. Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, et al. Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities. Pharm Res [Internet]. 2015 Feb 28;32:2713–6. Available from: <URL>.
  • 47. Cañas-Gutiérrez A, Toro L, Fornaguera C, Borrós S, Osorio M, Castro-Herazo C, et al. Biomineralization in Three-Dimensional Scaffolds Based on Bacterial Nanocellulose for Bone Tissue Engineering: Feature Characterization and Stem Cell Differentiation. Polymers (Basel) [Internet]. 2023 Apr 24;15(9):2012. Available from: <URL>.
  • 48. Yang X, Li Y, He W, Huang Q, Zhang R, Feng Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res Part A [Internet]. 2018 Nov 5;106(11):2863–70. Available from: <URL>.
  • 49. Zhao Z, Ma X, Ma J, Kang J, Zhang Y, Guo Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio [Internet]. 2022 Jan;13:100206. Available from: <URL>.
  • 50. Espitia-Quiroz LC, Fernández-Orjuela AL, Anaya-Sampayo LM, Acosta-Gómez AP, Sequeda-Castañeda LG, Gutiérrez-Prieto SJ, et al. Viability and Adhesion of Periodontal Ligament Fibroblasts on a Hydroxyapatite Scaffold Combined with Collagen, Polylactic Acid–Polyglycolic Acid Copolymer and Platelet-Rich Fibrin: A Preclinical Pilot Study. Dent J [Internet]. 2022 Sep 6;10(9):167. Available from: <URL>.
  • 51. Shahabi S, Najafi F, Majdabadi A, Hooshmand T, Haghbin Nazarpak M, Karimi B, et al. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite. Sci World J [Internet]. 2014;2014:420616. Available from: <URL>.
  • 52. Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, et al. Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. Sensebé L, editor. PLoS One [Internet]. 2015 Mar 24;10(3):e0117709. Available from: <URL>.
  • 53. Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics [Internet]. 2023 Jan 11;15(1):242. Available from: <URL>.
There are 53 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section RESEARCH ARTICLES
Authors

Fatih Çiftçi 0000-0002-3062-2404

Ali Can Özarslan 0000-0002-4864-0598

Publication Date November 11, 2023
Submission Date June 12, 2023
Acceptance Date September 30, 2023
Published in Issue Year 2023

Cite

Vancouver Çiftçi F, Özarslan AC. Preparation of PLGA-PEG/Hydroxyapatite Composites via Simple Methodology of Film Formation and Assessment of Their Structural, Thermal, and Biological Features. JOTCSA. 2023;10(4):1123-32.