Research Article
BibTex RIS Cite

The Optimization of Initial Treatment of Seaweed Ulva reticulata Using CEM Synthesizer Method for Bioethanol Production

Year 2024, , 403 - 412, 15.05.2024
https://doi.org/10.18596/jotcsa.1336106

Abstract

Research has been carried out on the optimization of initial treatment and hydrolysis using CEM microwave synthesizer and the production of bioethanol from Ulva reticulata seaweed. Optimization in the initial treatment was carried out by varying the concentration of HCl and H2SO4 (each in 1; 3; 5; and 7%), variations in time (30; 40; 50; and 60 minutes), temperature (100; 150; 200 and 250 °C), and electrical power (100; 150; 200; and 250 W). Fermentation was carried out anaerobically at 10% inoculum concentration and a production time of 6 days. Characterization of reducing sugar using DNS method and characterization of ethanol using GC-FID and HPLC. The results of the initial lignocellulosic analysis obtained the lignin content of 10.03%, cellulose 14.38% and hemicellulose 22.29%. After the initial treatment, the lignin content decreased to 3.86%, while cellulose increased to 24.50% and hemicellulose to 41.57%. The reducing sugar content produced using HCl is 97.10 g/L at optimum temperature 200 °C, for 60 minutes, using 7% concentration of HCl and 200 W of power, while the optimum reducing sugar content using H2SO4 is 76.40 g/L at optimum temperature 200 °C, time for 50 minutes, using 3% concentration of H2SO4 and 200 W of power. Production of bioethanol through fermentation and distillation processes obtained a bioethanol level of 43.89% (GC) or 18.89% (HPLC) for optimum conditions using H2SO4, whereas for optimum conditions using HCl, the bioethanol level is 44.29% (GC) or 18.09% (HPLC).

References

  • 1. Halder P, Azad K, Shah S, Sarker E. Prospects and technological advancement of cellulosic bioethanol ecofuel production. Advances in Eco-Fuels for a Sustainable Environment. Elsevier Ltd.; 2018. 211–236 p. Available from: <URL>
  • 2. Robak K, Balcerek M. Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol. 2018;56(2):174–87. Available from: <URL>
  • 3. Mathimani T, Pugazhendhi A. Utilization of Algae for Biofuel, Bio-products and Bio-remediation. Vol. 17, Biocatalysis and Agricultural Biotechnology. Elsevier Ltd; 2019. 326–330 p. Available from: <URL>
  • 4. Kolo SMD, Wahyuningrum D, Hertadi R. The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. Int J Microbiol. 2020;2020:1–11. Available from: <URL>
  • 5. Tse TJ, Wiens DJ, Reaney MJT. Production of bioethanol—a review of factors affecting ethanol yield. Fermentation. 2021;7(4):1–18. Available from: <URL>
  • 6. Yu-Qing T, Mahmood K, Shehzadi R, Ashraf MF. Ulva Lactuca and Its Polysaccharides: Food and Biomedical Aspects. J Biol Agric Healthc. 2016;6(1):140–51. Available from: <URL>
  • 7. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol. 2012;108:83–8. Available from: <URL>
  • 8. Kolo SMD, Presson J, Amfotis P. Produksi Bioetanol sebagai Energi Terbarukan dari Rumput Laut Ulva reticulata Asal Pulau Timor. ALCHEMY Jurnal Penelitian Kimia. 2021;17(2):159. Available from: <URL>
  • 9. Kolo SMD, Obenu NM, Tuas MYC. Pengaruh Pretreatment Makroalga Ulva Reticulata Menggunakan Microwave Irradiation Untuk Produksi Bioetanol. Jurnal Kimia. 2022;16(2):212. Available from: <URL>
  • 10. Kolo SMD, Obenu NM, Kefi L, Fuel FF. Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Pelarut HNO3 untuk Produksi Bioetanol. Jurnal Riset Kimia. 2023;14(1):12–23. Available from: <URL>
  • 11. Febriani Y, Sidharta BR, Pranata FS. Produksi Bioetanol Pati Umbi Talas (Colocasia esculenta (L.) Schott) dengan Variasi Konsentrasi Inokulum dan Waktu Fermentasi Zymomonas mobilis. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati. 2020;5(2):92–8. Available from: <URL>
  • 12. Susmiati Y. Detoksifikasi hidrolisat asam dari ubi kayu dengan metode arang aktif untuk produksi bioetanol. Agrointek. 2011;5(1):9–15. Available from: <URL>
  • 13. Samsuri M, Gozan M, Mardias R, M. Baiquni M, Hermansyah H, Wijanarko A, et al. Pemanfaatan Sellulosa Bagas Untuk Produksi Ethanol Melalui Sakarifikasi Dan Fermentasi Serentak Dengan Enzim Xylanase. MAKARA of Technology Series. 2012;11(1):17–24. Available from: <URL>
  • 14. Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol. 2011 Jun;102(11):6473–8. Available from: <URL>
  • 15. Wang H, Maxim ML, Gurau G, Rogers RD. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Bioresour Technol. 2013;136(2013):739–42. Available from: <URL>
  • 16. Sari RN, Bandol Utomo BS, Tambunan AH. Kondisi Optimum Produksi Bioetanol Dari Rumput Laut Coklat (Sargassum duplicatum) Menggunakan trichoderma Viride dan Pichia angophorae. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 2014 Dec 3;9(2):121. Available from: <URL>
  • 17. Adini S, Kusdiyantini E, Budiharjo A. Produksi Bioetanol Dari Rumput Laut dan Limbah Agar Gracilaria sp . dengan Metode Sakarifikasi Yang Berbeda Abstrak. Bioma. 2015;16(2):65–75. Available from: <URL>
  • 18. Wadi A, Ahmad A, Tompo M, Hasyim H, Tuwo A, Nakajima M, et al. Production of Bioethanol from Seaweed, Gracilaria verrucosa and Eucheuma cottonii, by Simultaneous Saccharification and Fermentation Methods. J Phys Conf Ser. 2019;1341(3):1–9. Available from: <URL>
  • 19. Galung FS. ANALISIS KANDUNGAN KARBOHIDRAT ( GLUKOSA) PADA SALAK GOLLA – GOLLA. Journal of Agritech Science. 2021;5(1):10–4. Available from: <URL>
  • 20. Tongtummachat T, Akkarawatkhoosith N, Kaewchada A, Jaree A. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor. Front Chem. 2020;7(January):1–9. Available from: <URL>
  • 21. Widyastuti P. Pengolahan Limbah Kulit Singkong Sebagai Bahan Bakar Bioetanol melalui Proses Fermentasi. Jurnal Kompetensi Teknik. 2019;11(1):41–6. Available from: <URL>
  • 22. Menegazzo F, Ghedini E, Signoretto M. 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules. 2018;23(9):1–18. Available from: <URL>
  • 23. Jayus J, Noorvita IV, Nurhayati N. Produksi Bioetanol Oleh Saccharomyces cerevisiae FNCC 3210 Pada Media Molases Dengan Kecepatan Agitasi Dan Aerasi Yang Berbeda. Jurnal Agroteknologi. 2016;10(02):184–92. Available from: <URL>
  • 24. Solikha DF. Analisis Kandungan p-Xilena pada Pertamax dan Pertamax Plus dengan Teknik Kromatografi Gas (GC-PU 4600) Menggunakan Standar Internal. Jurnal Ilmiah Indonesia. 2017;2(8):1–15. Available from: <URL>
  • 25. Azizah N, Al-bAARI A, Mulyani S. Pengaruh Lama Fermentasi Terhadap Kadar Alkohol, pH, dan Produksi Gas pada Proses Fermentasi Bioetanol dari Whey dengan Substitusi Kulit Nanas. Jurnal Aplikasi Teknologi Pangan. 2012;1(2):72–7. Available from: <URL>
  • 26. Micelyn Amelia Ngamput H, Herrani R. The effect of differentiation of hydrolysis time towards ethanol levels produced through ulva lactuca fermentation. J Phys Conf Ser. 2019;1241(1):1–8. Available from: <URL>
Year 2024, , 403 - 412, 15.05.2024
https://doi.org/10.18596/jotcsa.1336106

Abstract

References

  • 1. Halder P, Azad K, Shah S, Sarker E. Prospects and technological advancement of cellulosic bioethanol ecofuel production. Advances in Eco-Fuels for a Sustainable Environment. Elsevier Ltd.; 2018. 211–236 p. Available from: <URL>
  • 2. Robak K, Balcerek M. Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol. 2018;56(2):174–87. Available from: <URL>
  • 3. Mathimani T, Pugazhendhi A. Utilization of Algae for Biofuel, Bio-products and Bio-remediation. Vol. 17, Biocatalysis and Agricultural Biotechnology. Elsevier Ltd; 2019. 326–330 p. Available from: <URL>
  • 4. Kolo SMD, Wahyuningrum D, Hertadi R. The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. Int J Microbiol. 2020;2020:1–11. Available from: <URL>
  • 5. Tse TJ, Wiens DJ, Reaney MJT. Production of bioethanol—a review of factors affecting ethanol yield. Fermentation. 2021;7(4):1–18. Available from: <URL>
  • 6. Yu-Qing T, Mahmood K, Shehzadi R, Ashraf MF. Ulva Lactuca and Its Polysaccharides: Food and Biomedical Aspects. J Biol Agric Healthc. 2016;6(1):140–51. Available from: <URL>
  • 7. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol. 2012;108:83–8. Available from: <URL>
  • 8. Kolo SMD, Presson J, Amfotis P. Produksi Bioetanol sebagai Energi Terbarukan dari Rumput Laut Ulva reticulata Asal Pulau Timor. ALCHEMY Jurnal Penelitian Kimia. 2021;17(2):159. Available from: <URL>
  • 9. Kolo SMD, Obenu NM, Tuas MYC. Pengaruh Pretreatment Makroalga Ulva Reticulata Menggunakan Microwave Irradiation Untuk Produksi Bioetanol. Jurnal Kimia. 2022;16(2):212. Available from: <URL>
  • 10. Kolo SMD, Obenu NM, Kefi L, Fuel FF. Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Pelarut HNO3 untuk Produksi Bioetanol. Jurnal Riset Kimia. 2023;14(1):12–23. Available from: <URL>
  • 11. Febriani Y, Sidharta BR, Pranata FS. Produksi Bioetanol Pati Umbi Talas (Colocasia esculenta (L.) Schott) dengan Variasi Konsentrasi Inokulum dan Waktu Fermentasi Zymomonas mobilis. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati. 2020;5(2):92–8. Available from: <URL>
  • 12. Susmiati Y. Detoksifikasi hidrolisat asam dari ubi kayu dengan metode arang aktif untuk produksi bioetanol. Agrointek. 2011;5(1):9–15. Available from: <URL>
  • 13. Samsuri M, Gozan M, Mardias R, M. Baiquni M, Hermansyah H, Wijanarko A, et al. Pemanfaatan Sellulosa Bagas Untuk Produksi Ethanol Melalui Sakarifikasi Dan Fermentasi Serentak Dengan Enzim Xylanase. MAKARA of Technology Series. 2012;11(1):17–24. Available from: <URL>
  • 14. Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol. 2011 Jun;102(11):6473–8. Available from: <URL>
  • 15. Wang H, Maxim ML, Gurau G, Rogers RD. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Bioresour Technol. 2013;136(2013):739–42. Available from: <URL>
  • 16. Sari RN, Bandol Utomo BS, Tambunan AH. Kondisi Optimum Produksi Bioetanol Dari Rumput Laut Coklat (Sargassum duplicatum) Menggunakan trichoderma Viride dan Pichia angophorae. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 2014 Dec 3;9(2):121. Available from: <URL>
  • 17. Adini S, Kusdiyantini E, Budiharjo A. Produksi Bioetanol Dari Rumput Laut dan Limbah Agar Gracilaria sp . dengan Metode Sakarifikasi Yang Berbeda Abstrak. Bioma. 2015;16(2):65–75. Available from: <URL>
  • 18. Wadi A, Ahmad A, Tompo M, Hasyim H, Tuwo A, Nakajima M, et al. Production of Bioethanol from Seaweed, Gracilaria verrucosa and Eucheuma cottonii, by Simultaneous Saccharification and Fermentation Methods. J Phys Conf Ser. 2019;1341(3):1–9. Available from: <URL>
  • 19. Galung FS. ANALISIS KANDUNGAN KARBOHIDRAT ( GLUKOSA) PADA SALAK GOLLA – GOLLA. Journal of Agritech Science. 2021;5(1):10–4. Available from: <URL>
  • 20. Tongtummachat T, Akkarawatkhoosith N, Kaewchada A, Jaree A. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor. Front Chem. 2020;7(January):1–9. Available from: <URL>
  • 21. Widyastuti P. Pengolahan Limbah Kulit Singkong Sebagai Bahan Bakar Bioetanol melalui Proses Fermentasi. Jurnal Kompetensi Teknik. 2019;11(1):41–6. Available from: <URL>
  • 22. Menegazzo F, Ghedini E, Signoretto M. 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules. 2018;23(9):1–18. Available from: <URL>
  • 23. Jayus J, Noorvita IV, Nurhayati N. Produksi Bioetanol Oleh Saccharomyces cerevisiae FNCC 3210 Pada Media Molases Dengan Kecepatan Agitasi Dan Aerasi Yang Berbeda. Jurnal Agroteknologi. 2016;10(02):184–92. Available from: <URL>
  • 24. Solikha DF. Analisis Kandungan p-Xilena pada Pertamax dan Pertamax Plus dengan Teknik Kromatografi Gas (GC-PU 4600) Menggunakan Standar Internal. Jurnal Ilmiah Indonesia. 2017;2(8):1–15. Available from: <URL>
  • 25. Azizah N, Al-bAARI A, Mulyani S. Pengaruh Lama Fermentasi Terhadap Kadar Alkohol, pH, dan Produksi Gas pada Proses Fermentasi Bioetanol dari Whey dengan Substitusi Kulit Nanas. Jurnal Aplikasi Teknologi Pangan. 2012;1(2):72–7. Available from: <URL>
  • 26. Micelyn Amelia Ngamput H, Herrani R. The effect of differentiation of hydrolysis time towards ethanol levels produced through ulva lactuca fermentation. J Phys Conf Ser. 2019;1241(1):1–8. Available from: <URL>
There are 26 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section RESEARCH ARTICLES
Authors

Sefrinus Maria Dolfi Kolo 0000-0001-5800-6008

Publication Date May 15, 2024
Submission Date August 7, 2023
Acceptance Date December 3, 2023
Published in Issue Year 2024

Cite

Vancouver Kolo SMD. The Optimization of Initial Treatment of Seaweed Ulva reticulata Using CEM Synthesizer Method for Bioethanol Production. JOTCSA. 2024;11(2):403-12.