Research Article
BibTex RIS Cite

Microporous and Mesoporous Activated Carbons from Tea Stalk and Tea Stalk Pulps: Effect of Lignin Removal by One-Step and Two-Step Organosolv Treatment

Year 2024, , 171 - 188, 04.02.2024
https://doi.org/10.18596/jotcsa.1362724

Abstract

Delignification is a crucial pretreatment in the production of diverse value-added products from lignocellulosics. While modifying the surface functional groups, delignification also increases the specific surface area by providing a porous structure to the lignocellulosic biomass. Hydrothermal pretreatment can be used prior to delignification, to recover hemicellulose and boost delignification. By removing lignin and hemicellulose, cellulose-rich pulp becomes more accessible for activation. In the present study, three different activated carbons were prepared: activated carbon from tea stalk itself (ATS), activated carbon from tea stalk pulp obtained by using glycerol organosolv pretreatment (ATP), activated carbon from tea stalk hydrochar pulp obtained by using sequential hydrothermal pretreatment-organosolv delignification (AHTP). Each precursor was carbonized (at 800 °C) in the presence of KOH (KOH/precursor: 2/1). Activated carbons were characterized for their elemental content, surface functional groups, thermal stability, crystallinity, surface morphology, surface area and porous structure using elemental analysis (C-H-N-S), FTIR, TGA, XRD, SEM and, BET analysis, respectively. While hydrothermal pretreatment prior to organosolv pulping reduced the delignification yield, it also altered the pore structure of activated carbon. Among the activated carbons, only ATS had microporous structure with an average pore radius of 1 nm. ATP had the highest surface area (2056.72 m2/g) and micropore volume (0.81 cm3/g). Having mesopores (with an average pore radius of 5.74 nm) in its structure, AHTP had the least micropore volume (0.464 cm3/g) and surface area (1179.71 m2/g). The presence of micro and mesopores broadens the potential applications of activated carbon ranging from environmental applications to energy storage.

Ethical Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Institution

Yalova University Scientific Research Unit

Project Number

2020/AP/0007

References

  • 1. Adeleye AT, Akande AA, Odoh CK, Philip M, Fidelis TT, Amos PI, et al. Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J Ind Eng Chem [Internet]. 2021 Apr 25;96:59–75. Available from: <URL>.
  • 2. Darmawan S, Wistara NJ, Pari G, Maddu A, Syafii W. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-based Materials. BioResources [Internet]. 2016 Feb 29;11(2):3561–74. Available from: <URL>.
  • 3. De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol [Internet]. 2018 Jan 1;247:1144–54. Available from: <URL>.
  • 4. Astuti W, Sulistyaningsih T, Prastiyanto D, Rusiyanto, Lanjar, Riayanti FI, et al. Influence of lignocellulosic composition in biomass waste on the microstructure and dye adsorption characteristics of microwave-assisted ZnCl2 activated carbon. Biomass Convers Biorefinery [Internet]. 2023 May 10;1:1–17. Available from: <URL>.
  • 5. Nabais JMV, Gomes JA, Suhas, Carrott PJM, Laginhas C, Roman S. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. J Hazard Mater [Internet]. 2009 Aug 15;167(1–3):904–10. Available from: <URL>.
  • 6. Chen S, Xia Y, Zhang B, Chen H, Chen G, Tang S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. J Hazard Mater [Internet]. 2021 Apr 15;408:124956. Available from: <URL>.
  • 7. Chanpee S, Kaewtrakulchai N, Khemasiri N, Eiad-ua A, Assawasaengrat P. Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal. Molecules [Internet]. 2022 Aug 19;27(16):5309. Available from: <URL>.
  • 8. Demiral H, Demiral İ, Tümsek F, Karabacakoğlu B. Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem Eng J [Internet]. 2008 Oct 15;144(2):188–96. Available from: <URL>.
  • 9. Olivares-Marín M, Fernández JA, Lázaro MJ, Fernández-González C, Macías-García A, Gómez-Serrano V, et al. Cherry stones as precursor of activated carbons for supercapacitors. Mater Chem Phys [Internet]. 2009 Mar 15;114(1):323–7. Available from: <URL>.
  • 10. Martínez de Yuso A, Izquierdo MT, Valenciano R, Rubio B. Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes. Fuel Process Technol [Internet]. 2013 Jun 1;110:1–7. Available from: <URL>.
  • 11. Mohamad Nor N, Lau LC, Lee KT, Mohamed AR. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng [Internet]. 2013 Dec 1;1(4):658–66. Available from: <URL>.
  • 12. González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev [Internet]. 2018 Feb 1;82:1393–414. Available from: <URL>.
  • 13. Mohd Azmi NZ, Buthiyappan A, Abdul Raman AA, Abdul Patah MF, Sufian S. Recent advances in biomass based activated carbon for carbon dioxide capture – A review. J Ind Eng Chem [Internet]. 2022 Dec 25;116:1–20. Available from: <URL>.
  • 14. Khezami L, Chetouani A, Taouk B, Capart R. Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technol [Internet]. 2005 Sep 29;157(1–3):48–56. Available from: <URL>.
  • 15. Suhas, Carrott PJM, Ribeiro Carrott MML. Lignin – from natural adsorbent to activated carbon: A review. Bioresour Technol [Internet]. 2007 Sep 1;98(12):2301–12. Available from: <URL>.
  • 16. Xi Y, Yang D, Qiu X, Wang H, Huang J, Li Q. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crops Prod [Internet]. 2018 Nov 15;124:747–54. Available from: <URL>.
  • 17. Gayathiri M, Pulingam T, Lee KT, Sudesh K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere [Internet]. 2022 May 1;294:133764. Available from: <URL>.
  • 18. Guo Y, Rockstraw DA. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon N Y [Internet]. 2006 Jul 1;44(8):1464–75. Available from: <URL>.
  • 19. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol [Internet]. 2009 Jan 1;100(1):292–8. Available from: <URL>.
  • 20. Rodriguez Correa C, Otto T, Kruse A. Influence of the biomass components on the pore formation of activated carbon. Biomass and Bioenergy [Internet]. 2017 Feb 1;97:53–64. Available from: <URL>.
  • 21. Tsubota T, Nagata D, Kamimura S, Ohno T. Partial Delignification as Pretreatment for Nanoporous Carbon Material from Biomass. J Nanosci Nanotechnol [Internet]. 2017 Jan 1;17(1):815–20. Available from: <URL>.
  • 22. Gao Y, Aliques Tomas M del C, Garemark J, Sheng X, Berglund L, Li Y. Olive Stone Delignification Toward Efficient Adsorption of Metal Ions. Front Mater [Internet]. 2021 Feb 12;8:605931. Available from: <URL>.
  • 23. Keplinger T, Wittel FK, Rüggeberg M, Burgert I. Wood Derived Cellulose Scaffolds—Processing and Mechanics. Adv Mater [Internet]. 2021 Jul 14;33(28):2001375. Available from: <URL>.
  • 24. Mittal N, Kaur M, Singh V. Adsorption studies on hydrophobic disperse dye using cellulose derived mesoporous activated carbon. In: 9th International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering (AFTMME) [Internet]. Rupnagar; 2021. Available from: <URL>.
  • 25. Han S, Wang J, Wang L. Preparation of hydrophobic, porous, and flame-resistant lignocellulosic carbon material by pyrolyzing delignified wood. Vacuum [Internet]. 2022 Mar 1;197:110867. Available from: <URL>.
  • 26. Sun M, Hong L. Impacts of the pendant functional groups of cellulose precursor on the generation of pore structures of activated carbons. Carbon N Y [Internet]. 2011 Jun 1;49(7):2173–80. Available from: <URL>.
  • 27. Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon B-H, et al. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol [Internet]. 2022 Feb 1;346:126591. Available from: <URL>.
  • 28. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresour Technol [Internet]. 2023 Jan 1;368:128356. Available from: <URL>.
  • 29. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem [Internet]. 2016 Jan 18;18(2):360–81. Available from: <URL>.
  • 30. Ferreira JA, Taherzadeh MJ. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol [Internet]. 2020 Mar 1;299:122695. Available from: <URL>.
  • 31. Vargas F, Domínguez E, Vila C, Rodríguez A, Garrote G. Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production. Energy & Fuels [Internet]. 2016 Oct 20;30(10):8236–45. Available from: <URL>.
  • 32. Espirito Santo M, Rezende CA, Bernardinelli OD, Pereira N, Curvelo AAS, deAzevedo ER, et al. Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Ind Crops Prod [Internet]. 2018 Mar 1;113:64–74. Available from: <URL>.
  • 33. Ibrahim Q, Kruse A. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour Technol Reports [Internet]. 2020 Sep 1;11:100506. Available from: <URL>.
  • 34. Vedoya CI, Vallejos ME, Area MC, Felissia FE, Raffaeli N, da Silva Curvelo AA. Hydrothermal treatment and organosolv pulping of softwood assisted by carbon dioxide. Ind Crops Prod [Internet]. 2020 May 1;147:112244. Available from: <URL>.
  • 35. Guo K-N, Zhang C, Xu L-H, Sun S-C, Wen J-L, Yuan T-Q. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresour Technol [Internet]. 2022 Jun 1;354:127225. Available from: <URL>.
  • 36. Sun Q, Chen W-J, Pang B, Sun Z, Lam SS, Sonne C, et al. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresour Technol [Internet]. 2021 Dec 1;341:125807. Available from: <URL>. 37. Sun D, Lv Z-W, Rao J, Tian R, Sun S-N, Peng F. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr Polym [Internet]. 2022 Apr 1;281:119050. Available from: <URL>.
  • 38. Scapini T, dos Santos MSN, Bonatto C, Wancura JHC, Mulinari J, Camargo AF, et al. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresour Technol [Internet]. 2021 Dec 1;342:126033. Available from: <URL>.
  • 39. Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, et al. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci Total Environ [Internet]. 2023 Jan 20;857:159627. Available from: <URL>.
  • 40. Lachos-Perez D, César Torres-Mayanga P, Abaide ER, Zabot GL, De Castilhos F. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities. Bioresour Technol [Internet]. 2022 Jan 1;343:126084. Available from: <URL>.
  • 41. Başakçılardan Kabakcı S, Baran SS. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag [Internet]. 2019 Dec 1;100:259–68. Available from: <URL>.
  • 42. Başakçılardan Kabakcı S, Tanış MH. Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: a comparison of lignins. Biomass Convers Biorefinery [Internet]. 2021 Dec 21;11(6):2869–80. Available from: <URL>.
  • 43. García R, Pizarro C, Lavín AG, Bueno JL. Biomass proximate analysis using thermogravimetry. Bioresour Technol [Internet]. 2013 Jul 1;139:1–4. Available from: <URL>.
  • 44. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of Structural Carbohydrates and Lignin in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7/17/2005. 2008; Available from: <URL>.
  • 45. Md Salim R, Asik J, Sarjadi MS. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol [Internet]. 2021 Mar 23;55(2):295–313. Available from: <URL>.
  • 46. Güleç F, Riesco LMG, Williams O, Kostas ET, Samson A, Lester E. Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures. Fuel [Internet]. 2021 Oct 15;302:121166. Available from: <URL>.
  • 47. Fan Y, Cai Y, Li X, Jiao L, Xia J, Deng X. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Convers Manag [Internet]. 2017 Apr 15;138:106–18. Available from: <URL>.
  • 48. de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose [Internet]. 2010 Jun 12;17(3):595–606. Available from: <URL>.
  • 49. Kim DY, Nishiyama Y, Wada M, Kuga S. High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose [Internet]. 2001;8(1):29–33. Available from: <URL>.
  • 50. Guo F, He Y, Hassanpour A, Gardy J, Zhong Z. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy [Internet]. 2020 Apr 15;197:117147. Available from: <URL>.
  • 51. Kwasi Opoku B, Isaac A, Akrofi Micheal A, Kwesi Bentum J, Paul Muyoma W. Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses. Am J Appl Chem [Internet]. 2021;9(3):90–6. Available from: <URL>.
  • 52. Zhang Z, Xu L, Liu Y, Feng R, Zou T, Zhang Y, et al. Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Microporous Mesoporous Mater [Internet]. 2021 Feb 1;315:110904. Available from: <URL>.
  • 53. Abbasi S, Hekmat F, Shahrokhian S. Dual redox electrolytes for improving the performance of asymmetric supercapacitors constructed from heteroatom-doped green carbon spheres. J Alloys Compd [Internet]. 2023 Sep 25;957:170452. Available from: <URL>.
  • 54. Zhou H, Fu H, Wu X, Wu B, Dai C. Discrimination of tea varieties based on FTIR spectroscopy and an adaptive improved possibilistic c‐means clustering. J Food Process Preserv [Internet]. 2020 Oct 1;44(10):e14795. Available from: <URL>.
  • 55. Yu S, Xie M, Li Q, Zhang Y, Zhou H. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. J Energy Inst [Internet]. 2022 Aug 1;103:147–53. Available from: <URL>.
  • 56. Wan C, Jiao Y, Wei S, Li X, Tian W, Wu Y, et al. Scalable Top-to-Bottom Design on Low Tortuosity of Anisotropic Carbon Aerogels for Fast and Reusable Passive Capillary Absorption and Separation of Organic Leakages. ACS Appl Mater Interfaces [Internet]. 2019 Dec 26;11(51):47846–57. Available from: <URL>.
  • 57. Ferrer A, Alciaturi C, Faneite A, Ríos J. Analyses of Biomass Fibers by XRD, FT-IR, and NIR. In: Analytical Techniques and Methods for Biomass [Internet]. Cham: Springer International Publishing; 2016. p. 45–83. Available from: <URL>.
  • 58. Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, et al. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J [Internet]. 2016 Mar 15;288:778–88. Available from: <URL>.
  • 59. Ali R, Aslam Z, Shawabkeh RA, Asghar A, Hussein IA. BET, FTIR, and RAMAN characterizations of activated carbon from wasteoil fly ash. TURKISH J Chem [Internet]. 2020 Apr 1;44(2):279–95. Available from: <URL>.
  • 60. Haghbin MR, Niknam Shahrak M. Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technol [Internet]. 2021 Jan 2;377:890–9. Available from: <URL>.
  • 61. Njoku VO, Islam MA, Asif M, Hameed BH. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J Environ Manage [Internet]. 2015 May 1;154:138–44. Available from: <URL>.
  • 62. Islam MS, Ang BC, Gharehkhani S, Afifi ABM. Adsorption capability of activated carbon synthesized from coconut shell. Carbon Lett [Internet]. 2016 Oct 31;20:1–9. Available from: <URL>.
  • 63. Zhang J, Yu L, Wang Z, Tian Y, Qu Y, Wang Y, et al. Spherical microporous/mesoporous activated carbon from pulping black liquor. J Chem Technol Biotechnol [Internet]. 2011 Sep 1;86(9):1177–83. Available from: <URL>.
  • 64. Li J, Li K, Zhang T, Wang S, Jiang Y, Bao Y, et al. Development of Activated carbon from Windmill palm sheath fiber by KOH activation. Fibers Polym [Internet]. 2016 Jun 6;17(6):880–7. Available from: <URL>.
  • 65. Chakraborty I, Rongpipi S, Govindaraju I, B R, Mal SS, Gomez EW, et al. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microsc Res Tech [Internet]. 2022 May 18;85(5):1990–2015. Available from: <URL>.
  • 66. Barbash VA, Yaschenko O V., Shniruk OM. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp. Nanoscale Res Lett [Internet]. 2017 Dec 31;12(1):241. Available from: <URL>.
  • 67. Buendia-Kandia F, Brosse N, Petitjean D, Mauviel G, Rondags E, Guedon E, et al. Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Biorefinery [Internet]. 2020 Mar 7;10(1):1–13. Available from: <URL>.
  • 68. Tang S, Liu R, Sun FF, Dong C, Wang R, Gao Z, et al. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H2O2. Biotechnol Biofuels [Internet]. 2017 Dec 8;10(1):86. Available from: <URL>.
  • 69. Song X, Jiang Y, Rong X, Wei W, Wang S, Nie S. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresour Technol [Internet]. 2016 Sep 1;216:1098–101. Available from: <URL>.
  • 70. Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol [Internet]. 2014 Jan 1;151:402–5. Available from: <URL>.
  • 71. Fan J, Li F, Fang D, Chen Q, Chen Q, Wang H, et al. Effects of hydrophobic coating on properties of hydrochar produced at different temperatures: Specific surface area and oxygen-containing functional groups. Bioresour Technol [Internet]. 2022 Nov 1;363:127971. Available from: <URL>.
  • 72. Sun FF, Wang L, Hong J, Ren J, Du F, Hu J, et al. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol [Internet]. 2015 Jul 1;187:354–61. Available from: <URL>.
  • 73. Dong H, Zhang L, Shao L, Wu Z, Zhan P, Zhou X, et al. Versatile Strategy for the Preparation of Woody Biochar with Oxygen-Rich Groups and Enhanced Porosity for Highly Efficient Cr(VI) Removal. ACS Omega [Internet]. 2022 Jan 11;7(1):863–74. Available from: <URL>.
  • 74. Szewczyk I, Kosydar R, Natkański P, Duraczyńska D, Gurgul J, Kuśtrowski P, et al. Effect of the type of siliceous template and carbon precursor on physicochemical and catalytic properties of mesoporous nanostructured carbon-palladium systems. J Porous Mater [Internet]. 2020 Oct 24;27(5):1287–308. Available from: <URL>.
  • 75. Cheng C, He Q, Ismail TM, Mosqueda A, Ding L, Yu J, et al. Hydrothermal carbonization of rape straw: Effect of reaction parameters on hydrochar and migration of AAEMs. Chemosphere [Internet]. 2022 Mar 1;291:132785. Available from: <URL>.
  • 76. Wang S, Zhao S, Cheng X, Qian L, Barati B, Gong X, et al. Study on two-step hydrothermal liquefaction of macroalgae for improving bio-oil. Bioresour Technol [Internet]. 2021 Jan 1;319:124176. Available from: <URL>.
  • 77. Chatterjee S, Saito T. Lignin‐Derived Advanced Carbon Materials. ChemSusChem [Internet]. 2015 Dec 16;8(23):3941–58. Available from: <URL>.
  • 78. Thommes M, Kaneko K, Neimark A V., Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem [Internet]. 2015 Oct 1;87(9–10):1051–69. Available from: <URL>.
  • 79. Zheng K, Xiao L. Iron and nitrogen co-doped porous carbon derived from natural cellulose of wood activating peroxymonosulfate for degradation of tetracycline: Role of delignification and mechanisms. Int J Biol Macromol [Internet]. 2022 Dec 1;222:2041–53. Available from: <URL>.
  • 80. Mistar EM, Alfatah T, Supardan MD. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. J Mater Res Technol [Internet]. 2020 May 1;9(3):6278–86. Available from: <URL>.
  • 81. Guo Y, Wang Q. Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures. Processes [Internet]. 2022 Aug 28;10(9):1712. Available from: <URL>.
  • 82. Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, et al. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol [Internet]. 2022 May 15;207:254–62. Available from: <URL>.
  • 83. Thongpat W, Taweekun J, Maliwan K. Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH. Carbon Lett [Internet]. 2021 Oct 22;31(5):1079–88. Available from: <URL>.
  • 84. Abuelnoor N, AlHajaj A, Khaleel M, Vega LF, Abu-Zahra MRM. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere [Internet]. 2021 Nov 1;282:131111. Available from: <URL>.
  • 85. Wang X, Cheng H, Ye G, Fan J, Yao F, Wang Y, et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere [Internet]. 2022 Jan 1;287:131995. Available from: <URL>.
  • 86. Blanco AAG, de Oliveira JCA, López R, Moreno-Piraján JC, Giraldo L, Zgrablich G, et al. A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2010 Mar 20;357(1–3):74–83. Available from: <URL>.
  • 87. Wang Q, Yu Y, Li Y, Min X, Zhang J, Sun T. Methane separation and capture from nitrogen rich gases by selective adsorption in microporous Materials: A review. Sep Purif Technol [Internet]. 2022 Jan 15;283:120206. Available from: <URL>.
  • 88. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon N Y [Internet]. 2005 Jul 1;43(8):1758–67. Available from: <URL>.
  • 89. Zhu R, Yu Q, Li M, Zhao H, Jin S, Huang Y, et al. Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review. J Environ Chem Eng [Internet]. 2021 Oct 1;9(5):105905. Available from: <URL>.
  • 90. Liu C, Dang Y, Zhou Y, Liu J, Sun Y, Su W, et al. Effect of carbon pore structure on the CH4/N2 separation. Adsorption [Internet]. 2012 Nov 5;18(3–4):321–5. Available from: <URL>.
  • 91. Djeridi W, Ouederni A, Wiersum AD, Llewellyn PL, El Mir L. High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Mater Lett [Internet]. 2013 May 15;99:184–7. Available from: <URL>.
  • 92. Tang Z, Gao J, Zhang Y, Du Q, Feng D, Dong H, et al. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption. Fuel Process Technol [Internet]. 2023 Mar 1;241:107613. Available from: <URL>.
  • 93. Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon N Y [Internet]. 2023 Jan 5;201:633–47. Available from: <URL>.
  • 94. Kamran U, Rhee KY, Lee S-Y, Park S-J. Solvent-free conversion of cucumber peels to N-doped microporous carbons for efficient CO2 capture performance. J Clean Prod [Internet]. 2022 Oct 1;369:133367. Available from: <URL>.
  • 95. Sevilla M, Fuertes AB. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci [Internet]. 2011 Apr 28;4(5):1765–71. Available from: <URL>.
  • 96. González B, Manyà JJ. Activated olive mill waste-based hydrochars as selective adsorbents for CO2 capture under postcombustion conditions. Chem Eng Process - Process Intensif [Internet]. 2020 Mar 1;149:107830. Available from: <URL>.
  • 97. Xu J, Shi J, Cui H, Yan N, Liu Y. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent. Chem Phys Lett [Internet]. 2018 Nov 1;711:107–12. Available from: <URL>.
  • 98. Hong S-M, Jang E, Dysart AD, Pol VG, Lee KB. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments. Sci Rep [Internet]. 2016 Oct 4;6(1):34590. Available from: <URL>.
  • 99. Deng S, Hu B, Chen T, Wang B, Huang J, Wang Y, et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption [Internet]. 2015 Feb 23;21(1–2):125–33. Available from: <URL>.
  • 100. Deng S, Wei H, Chen T, Wang B, Huang J, Yu G. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem Eng J [Internet]. 2014 Oct 1;253:46–54. Available from: <URL>.
  • 101. Zhu X-L, Wang P-Y, Peng C, Yang J, Yan X-B. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chem Lett [Internet]. 2014 Jun 1;25(6):929–32. Available from: <URL>.
  • 102. Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy [Internet]. 2012 Nov 1;99:272–9. Available from: <URL>.
  • 103. Delgado LF, Charles P, Glucina K, Morlay C. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—A review. Sci Total Environ [Internet]. 2012 Oct 1;435–436:509–25. Available from: <URL>.
  • 104. Libbrecht W, Verberckmoes A, Thybaut JW, Van Der Voort P, De Clercq J. Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. Carbon N Y [Internet]. 2017 May 1;116:528–46. Available from: <URL>.
  • 105. Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev [Internet]. 2018 May 1;87:1–21. Available from: <URL>.
  • 106. Jawad AH, Saud Abdulhameed A, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Rizwan Khan M. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese J Chem Eng [Internet]. 2021 Apr 1;32:281–90. Available from: <URL>.
  • 107. Brito MJP, Veloso CM, Santos LS, Bonomo RCF, Fontan R da CI. Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technol [Internet]. 2018 Nov 1;339:334–43. Available from: <URL>.
  • 108. Sangon S, Hunt AJ, Attard TM, Mengchang P, Ngernyen Y, Supanchaiyamat N. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod [Internet]. 2018 Jan 20;172:1128–39. Available from: <URL>.
  • 109. El-Bery HM, Saleh M, El-Gendy RA, Saleh MR, Thabet SM. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci Rep [Internet]. 2022 Mar 31;12(1):5499. Available from: <URL>.
  • 110. Abbaci F, Nait-Merzoug A, Guellati O, Harat A, El Haskouri J, Delhalle J, et al. Bio/KOH ratio effect on activated biochar and their dye based wastewater depollution. J Anal Appl Pyrolysis [Internet]. 2022 Mar 1;162:105452. Available from: <URL>.
  • 111. Sun J, Ji L, Han X, Wu Z, Cai L, Guo J, et al. Mesoporous Activated Biochar from Crab Shell with Enhanced Adsorption Performance for Tetracycline. Foods [Internet]. 2023 Mar 1;12(5):1042. Available from: <URL>.
  • 112. Balathanigaimani MS, Shim W-G, Lee M-J, Kim C, Lee J-W, Moon H. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem commun [Internet]. 2008 Jun 1;10(6):868–71. Available from: <URL>.
  • 113. Wu Y, Cao J-P, Zhuang Q-Q, Zhao X-Y, Zhou Z, Wei Y-L, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochim Acta [Internet]. 2021 Mar 1;371:137825. Available from: <URL>.
  • 114. Karnan M, Subramani K, Srividhya PK, Sathish M. Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochim Acta [Internet]. 2017 Feb 20;228:586–96. Available from: <URL>.
  • 115. Ponce MF, Mamani A, Jerez F, Castilla J, Ramos PB, Acosta GG, et al. Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor. Energy [Internet]. 2022 Dec 1;260:125092. Available from: <URL>.
  • 116. Enock TK, King’ondu CK, Pogrebnoi A, Jande YAC. Biogas-slurry derived mesoporous carbon for supercapacitor applications. Mater Today Energy [Internet]. 2017 Sep 1;5:126–37. Available from: <URL>.
  • 117. Zou Z, Luo X, Wang L, Zhang Y, Xu Z, Jiang C. Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors. J Energy Storage [Internet]. 2021 Dec 1;44:103385. Available from: <URL>.
Year 2024, , 171 - 188, 04.02.2024
https://doi.org/10.18596/jotcsa.1362724

Abstract

Project Number

2020/AP/0007

References

  • 1. Adeleye AT, Akande AA, Odoh CK, Philip M, Fidelis TT, Amos PI, et al. Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J Ind Eng Chem [Internet]. 2021 Apr 25;96:59–75. Available from: <URL>.
  • 2. Darmawan S, Wistara NJ, Pari G, Maddu A, Syafii W. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-based Materials. BioResources [Internet]. 2016 Feb 29;11(2):3561–74. Available from: <URL>.
  • 3. De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol [Internet]. 2018 Jan 1;247:1144–54. Available from: <URL>.
  • 4. Astuti W, Sulistyaningsih T, Prastiyanto D, Rusiyanto, Lanjar, Riayanti FI, et al. Influence of lignocellulosic composition in biomass waste on the microstructure and dye adsorption characteristics of microwave-assisted ZnCl2 activated carbon. Biomass Convers Biorefinery [Internet]. 2023 May 10;1:1–17. Available from: <URL>.
  • 5. Nabais JMV, Gomes JA, Suhas, Carrott PJM, Laginhas C, Roman S. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. J Hazard Mater [Internet]. 2009 Aug 15;167(1–3):904–10. Available from: <URL>.
  • 6. Chen S, Xia Y, Zhang B, Chen H, Chen G, Tang S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. J Hazard Mater [Internet]. 2021 Apr 15;408:124956. Available from: <URL>.
  • 7. Chanpee S, Kaewtrakulchai N, Khemasiri N, Eiad-ua A, Assawasaengrat P. Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal. Molecules [Internet]. 2022 Aug 19;27(16):5309. Available from: <URL>.
  • 8. Demiral H, Demiral İ, Tümsek F, Karabacakoğlu B. Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem Eng J [Internet]. 2008 Oct 15;144(2):188–96. Available from: <URL>.
  • 9. Olivares-Marín M, Fernández JA, Lázaro MJ, Fernández-González C, Macías-García A, Gómez-Serrano V, et al. Cherry stones as precursor of activated carbons for supercapacitors. Mater Chem Phys [Internet]. 2009 Mar 15;114(1):323–7. Available from: <URL>.
  • 10. Martínez de Yuso A, Izquierdo MT, Valenciano R, Rubio B. Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes. Fuel Process Technol [Internet]. 2013 Jun 1;110:1–7. Available from: <URL>.
  • 11. Mohamad Nor N, Lau LC, Lee KT, Mohamed AR. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng [Internet]. 2013 Dec 1;1(4):658–66. Available from: <URL>.
  • 12. González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev [Internet]. 2018 Feb 1;82:1393–414. Available from: <URL>.
  • 13. Mohd Azmi NZ, Buthiyappan A, Abdul Raman AA, Abdul Patah MF, Sufian S. Recent advances in biomass based activated carbon for carbon dioxide capture – A review. J Ind Eng Chem [Internet]. 2022 Dec 25;116:1–20. Available from: <URL>.
  • 14. Khezami L, Chetouani A, Taouk B, Capart R. Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technol [Internet]. 2005 Sep 29;157(1–3):48–56. Available from: <URL>.
  • 15. Suhas, Carrott PJM, Ribeiro Carrott MML. Lignin – from natural adsorbent to activated carbon: A review. Bioresour Technol [Internet]. 2007 Sep 1;98(12):2301–12. Available from: <URL>.
  • 16. Xi Y, Yang D, Qiu X, Wang H, Huang J, Li Q. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crops Prod [Internet]. 2018 Nov 15;124:747–54. Available from: <URL>.
  • 17. Gayathiri M, Pulingam T, Lee KT, Sudesh K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere [Internet]. 2022 May 1;294:133764. Available from: <URL>.
  • 18. Guo Y, Rockstraw DA. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon N Y [Internet]. 2006 Jul 1;44(8):1464–75. Available from: <URL>.
  • 19. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol [Internet]. 2009 Jan 1;100(1):292–8. Available from: <URL>.
  • 20. Rodriguez Correa C, Otto T, Kruse A. Influence of the biomass components on the pore formation of activated carbon. Biomass and Bioenergy [Internet]. 2017 Feb 1;97:53–64. Available from: <URL>.
  • 21. Tsubota T, Nagata D, Kamimura S, Ohno T. Partial Delignification as Pretreatment for Nanoporous Carbon Material from Biomass. J Nanosci Nanotechnol [Internet]. 2017 Jan 1;17(1):815–20. Available from: <URL>.
  • 22. Gao Y, Aliques Tomas M del C, Garemark J, Sheng X, Berglund L, Li Y. Olive Stone Delignification Toward Efficient Adsorption of Metal Ions. Front Mater [Internet]. 2021 Feb 12;8:605931. Available from: <URL>.
  • 23. Keplinger T, Wittel FK, Rüggeberg M, Burgert I. Wood Derived Cellulose Scaffolds—Processing and Mechanics. Adv Mater [Internet]. 2021 Jul 14;33(28):2001375. Available from: <URL>.
  • 24. Mittal N, Kaur M, Singh V. Adsorption studies on hydrophobic disperse dye using cellulose derived mesoporous activated carbon. In: 9th International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering (AFTMME) [Internet]. Rupnagar; 2021. Available from: <URL>.
  • 25. Han S, Wang J, Wang L. Preparation of hydrophobic, porous, and flame-resistant lignocellulosic carbon material by pyrolyzing delignified wood. Vacuum [Internet]. 2022 Mar 1;197:110867. Available from: <URL>.
  • 26. Sun M, Hong L. Impacts of the pendant functional groups of cellulose precursor on the generation of pore structures of activated carbons. Carbon N Y [Internet]. 2011 Jun 1;49(7):2173–80. Available from: <URL>.
  • 27. Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon B-H, et al. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol [Internet]. 2022 Feb 1;346:126591. Available from: <URL>.
  • 28. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresour Technol [Internet]. 2023 Jan 1;368:128356. Available from: <URL>.
  • 29. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem [Internet]. 2016 Jan 18;18(2):360–81. Available from: <URL>.
  • 30. Ferreira JA, Taherzadeh MJ. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol [Internet]. 2020 Mar 1;299:122695. Available from: <URL>.
  • 31. Vargas F, Domínguez E, Vila C, Rodríguez A, Garrote G. Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production. Energy & Fuels [Internet]. 2016 Oct 20;30(10):8236–45. Available from: <URL>.
  • 32. Espirito Santo M, Rezende CA, Bernardinelli OD, Pereira N, Curvelo AAS, deAzevedo ER, et al. Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Ind Crops Prod [Internet]. 2018 Mar 1;113:64–74. Available from: <URL>.
  • 33. Ibrahim Q, Kruse A. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour Technol Reports [Internet]. 2020 Sep 1;11:100506. Available from: <URL>.
  • 34. Vedoya CI, Vallejos ME, Area MC, Felissia FE, Raffaeli N, da Silva Curvelo AA. Hydrothermal treatment and organosolv pulping of softwood assisted by carbon dioxide. Ind Crops Prod [Internet]. 2020 May 1;147:112244. Available from: <URL>.
  • 35. Guo K-N, Zhang C, Xu L-H, Sun S-C, Wen J-L, Yuan T-Q. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresour Technol [Internet]. 2022 Jun 1;354:127225. Available from: <URL>.
  • 36. Sun Q, Chen W-J, Pang B, Sun Z, Lam SS, Sonne C, et al. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresour Technol [Internet]. 2021 Dec 1;341:125807. Available from: <URL>. 37. Sun D, Lv Z-W, Rao J, Tian R, Sun S-N, Peng F. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr Polym [Internet]. 2022 Apr 1;281:119050. Available from: <URL>.
  • 38. Scapini T, dos Santos MSN, Bonatto C, Wancura JHC, Mulinari J, Camargo AF, et al. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresour Technol [Internet]. 2021 Dec 1;342:126033. Available from: <URL>.
  • 39. Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, et al. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci Total Environ [Internet]. 2023 Jan 20;857:159627. Available from: <URL>.
  • 40. Lachos-Perez D, César Torres-Mayanga P, Abaide ER, Zabot GL, De Castilhos F. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities. Bioresour Technol [Internet]. 2022 Jan 1;343:126084. Available from: <URL>.
  • 41. Başakçılardan Kabakcı S, Baran SS. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag [Internet]. 2019 Dec 1;100:259–68. Available from: <URL>.
  • 42. Başakçılardan Kabakcı S, Tanış MH. Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: a comparison of lignins. Biomass Convers Biorefinery [Internet]. 2021 Dec 21;11(6):2869–80. Available from: <URL>.
  • 43. García R, Pizarro C, Lavín AG, Bueno JL. Biomass proximate analysis using thermogravimetry. Bioresour Technol [Internet]. 2013 Jul 1;139:1–4. Available from: <URL>.
  • 44. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of Structural Carbohydrates and Lignin in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7/17/2005. 2008; Available from: <URL>.
  • 45. Md Salim R, Asik J, Sarjadi MS. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol [Internet]. 2021 Mar 23;55(2):295–313. Available from: <URL>.
  • 46. Güleç F, Riesco LMG, Williams O, Kostas ET, Samson A, Lester E. Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures. Fuel [Internet]. 2021 Oct 15;302:121166. Available from: <URL>.
  • 47. Fan Y, Cai Y, Li X, Jiao L, Xia J, Deng X. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Convers Manag [Internet]. 2017 Apr 15;138:106–18. Available from: <URL>.
  • 48. de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose [Internet]. 2010 Jun 12;17(3):595–606. Available from: <URL>.
  • 49. Kim DY, Nishiyama Y, Wada M, Kuga S. High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose [Internet]. 2001;8(1):29–33. Available from: <URL>.
  • 50. Guo F, He Y, Hassanpour A, Gardy J, Zhong Z. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy [Internet]. 2020 Apr 15;197:117147. Available from: <URL>.
  • 51. Kwasi Opoku B, Isaac A, Akrofi Micheal A, Kwesi Bentum J, Paul Muyoma W. Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses. Am J Appl Chem [Internet]. 2021;9(3):90–6. Available from: <URL>.
  • 52. Zhang Z, Xu L, Liu Y, Feng R, Zou T, Zhang Y, et al. Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Microporous Mesoporous Mater [Internet]. 2021 Feb 1;315:110904. Available from: <URL>.
  • 53. Abbasi S, Hekmat F, Shahrokhian S. Dual redox electrolytes for improving the performance of asymmetric supercapacitors constructed from heteroatom-doped green carbon spheres. J Alloys Compd [Internet]. 2023 Sep 25;957:170452. Available from: <URL>.
  • 54. Zhou H, Fu H, Wu X, Wu B, Dai C. Discrimination of tea varieties based on FTIR spectroscopy and an adaptive improved possibilistic c‐means clustering. J Food Process Preserv [Internet]. 2020 Oct 1;44(10):e14795. Available from: <URL>.
  • 55. Yu S, Xie M, Li Q, Zhang Y, Zhou H. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. J Energy Inst [Internet]. 2022 Aug 1;103:147–53. Available from: <URL>.
  • 56. Wan C, Jiao Y, Wei S, Li X, Tian W, Wu Y, et al. Scalable Top-to-Bottom Design on Low Tortuosity of Anisotropic Carbon Aerogels for Fast and Reusable Passive Capillary Absorption and Separation of Organic Leakages. ACS Appl Mater Interfaces [Internet]. 2019 Dec 26;11(51):47846–57. Available from: <URL>.
  • 57. Ferrer A, Alciaturi C, Faneite A, Ríos J. Analyses of Biomass Fibers by XRD, FT-IR, and NIR. In: Analytical Techniques and Methods for Biomass [Internet]. Cham: Springer International Publishing; 2016. p. 45–83. Available from: <URL>.
  • 58. Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, et al. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J [Internet]. 2016 Mar 15;288:778–88. Available from: <URL>.
  • 59. Ali R, Aslam Z, Shawabkeh RA, Asghar A, Hussein IA. BET, FTIR, and RAMAN characterizations of activated carbon from wasteoil fly ash. TURKISH J Chem [Internet]. 2020 Apr 1;44(2):279–95. Available from: <URL>.
  • 60. Haghbin MR, Niknam Shahrak M. Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technol [Internet]. 2021 Jan 2;377:890–9. Available from: <URL>.
  • 61. Njoku VO, Islam MA, Asif M, Hameed BH. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J Environ Manage [Internet]. 2015 May 1;154:138–44. Available from: <URL>.
  • 62. Islam MS, Ang BC, Gharehkhani S, Afifi ABM. Adsorption capability of activated carbon synthesized from coconut shell. Carbon Lett [Internet]. 2016 Oct 31;20:1–9. Available from: <URL>.
  • 63. Zhang J, Yu L, Wang Z, Tian Y, Qu Y, Wang Y, et al. Spherical microporous/mesoporous activated carbon from pulping black liquor. J Chem Technol Biotechnol [Internet]. 2011 Sep 1;86(9):1177–83. Available from: <URL>.
  • 64. Li J, Li K, Zhang T, Wang S, Jiang Y, Bao Y, et al. Development of Activated carbon from Windmill palm sheath fiber by KOH activation. Fibers Polym [Internet]. 2016 Jun 6;17(6):880–7. Available from: <URL>.
  • 65. Chakraborty I, Rongpipi S, Govindaraju I, B R, Mal SS, Gomez EW, et al. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microsc Res Tech [Internet]. 2022 May 18;85(5):1990–2015. Available from: <URL>.
  • 66. Barbash VA, Yaschenko O V., Shniruk OM. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp. Nanoscale Res Lett [Internet]. 2017 Dec 31;12(1):241. Available from: <URL>.
  • 67. Buendia-Kandia F, Brosse N, Petitjean D, Mauviel G, Rondags E, Guedon E, et al. Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Biorefinery [Internet]. 2020 Mar 7;10(1):1–13. Available from: <URL>.
  • 68. Tang S, Liu R, Sun FF, Dong C, Wang R, Gao Z, et al. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H2O2. Biotechnol Biofuels [Internet]. 2017 Dec 8;10(1):86. Available from: <URL>.
  • 69. Song X, Jiang Y, Rong X, Wei W, Wang S, Nie S. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresour Technol [Internet]. 2016 Sep 1;216:1098–101. Available from: <URL>.
  • 70. Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol [Internet]. 2014 Jan 1;151:402–5. Available from: <URL>.
  • 71. Fan J, Li F, Fang D, Chen Q, Chen Q, Wang H, et al. Effects of hydrophobic coating on properties of hydrochar produced at different temperatures: Specific surface area and oxygen-containing functional groups. Bioresour Technol [Internet]. 2022 Nov 1;363:127971. Available from: <URL>.
  • 72. Sun FF, Wang L, Hong J, Ren J, Du F, Hu J, et al. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol [Internet]. 2015 Jul 1;187:354–61. Available from: <URL>.
  • 73. Dong H, Zhang L, Shao L, Wu Z, Zhan P, Zhou X, et al. Versatile Strategy for the Preparation of Woody Biochar with Oxygen-Rich Groups and Enhanced Porosity for Highly Efficient Cr(VI) Removal. ACS Omega [Internet]. 2022 Jan 11;7(1):863–74. Available from: <URL>.
  • 74. Szewczyk I, Kosydar R, Natkański P, Duraczyńska D, Gurgul J, Kuśtrowski P, et al. Effect of the type of siliceous template and carbon precursor on physicochemical and catalytic properties of mesoporous nanostructured carbon-palladium systems. J Porous Mater [Internet]. 2020 Oct 24;27(5):1287–308. Available from: <URL>.
  • 75. Cheng C, He Q, Ismail TM, Mosqueda A, Ding L, Yu J, et al. Hydrothermal carbonization of rape straw: Effect of reaction parameters on hydrochar and migration of AAEMs. Chemosphere [Internet]. 2022 Mar 1;291:132785. Available from: <URL>.
  • 76. Wang S, Zhao S, Cheng X, Qian L, Barati B, Gong X, et al. Study on two-step hydrothermal liquefaction of macroalgae for improving bio-oil. Bioresour Technol [Internet]. 2021 Jan 1;319:124176. Available from: <URL>.
  • 77. Chatterjee S, Saito T. Lignin‐Derived Advanced Carbon Materials. ChemSusChem [Internet]. 2015 Dec 16;8(23):3941–58. Available from: <URL>.
  • 78. Thommes M, Kaneko K, Neimark A V., Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem [Internet]. 2015 Oct 1;87(9–10):1051–69. Available from: <URL>.
  • 79. Zheng K, Xiao L. Iron and nitrogen co-doped porous carbon derived from natural cellulose of wood activating peroxymonosulfate for degradation of tetracycline: Role of delignification and mechanisms. Int J Biol Macromol [Internet]. 2022 Dec 1;222:2041–53. Available from: <URL>.
  • 80. Mistar EM, Alfatah T, Supardan MD. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. J Mater Res Technol [Internet]. 2020 May 1;9(3):6278–86. Available from: <URL>.
  • 81. Guo Y, Wang Q. Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures. Processes [Internet]. 2022 Aug 28;10(9):1712. Available from: <URL>.
  • 82. Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, et al. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol [Internet]. 2022 May 15;207:254–62. Available from: <URL>.
  • 83. Thongpat W, Taweekun J, Maliwan K. Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH. Carbon Lett [Internet]. 2021 Oct 22;31(5):1079–88. Available from: <URL>.
  • 84. Abuelnoor N, AlHajaj A, Khaleel M, Vega LF, Abu-Zahra MRM. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere [Internet]. 2021 Nov 1;282:131111. Available from: <URL>.
  • 85. Wang X, Cheng H, Ye G, Fan J, Yao F, Wang Y, et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere [Internet]. 2022 Jan 1;287:131995. Available from: <URL>.
  • 86. Blanco AAG, de Oliveira JCA, López R, Moreno-Piraján JC, Giraldo L, Zgrablich G, et al. A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2010 Mar 20;357(1–3):74–83. Available from: <URL>.
  • 87. Wang Q, Yu Y, Li Y, Min X, Zhang J, Sun T. Methane separation and capture from nitrogen rich gases by selective adsorption in microporous Materials: A review. Sep Purif Technol [Internet]. 2022 Jan 15;283:120206. Available from: <URL>.
  • 88. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon N Y [Internet]. 2005 Jul 1;43(8):1758–67. Available from: <URL>.
  • 89. Zhu R, Yu Q, Li M, Zhao H, Jin S, Huang Y, et al. Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review. J Environ Chem Eng [Internet]. 2021 Oct 1;9(5):105905. Available from: <URL>.
  • 90. Liu C, Dang Y, Zhou Y, Liu J, Sun Y, Su W, et al. Effect of carbon pore structure on the CH4/N2 separation. Adsorption [Internet]. 2012 Nov 5;18(3–4):321–5. Available from: <URL>.
  • 91. Djeridi W, Ouederni A, Wiersum AD, Llewellyn PL, El Mir L. High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Mater Lett [Internet]. 2013 May 15;99:184–7. Available from: <URL>.
  • 92. Tang Z, Gao J, Zhang Y, Du Q, Feng D, Dong H, et al. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption. Fuel Process Technol [Internet]. 2023 Mar 1;241:107613. Available from: <URL>.
  • 93. Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon N Y [Internet]. 2023 Jan 5;201:633–47. Available from: <URL>.
  • 94. Kamran U, Rhee KY, Lee S-Y, Park S-J. Solvent-free conversion of cucumber peels to N-doped microporous carbons for efficient CO2 capture performance. J Clean Prod [Internet]. 2022 Oct 1;369:133367. Available from: <URL>.
  • 95. Sevilla M, Fuertes AB. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci [Internet]. 2011 Apr 28;4(5):1765–71. Available from: <URL>.
  • 96. González B, Manyà JJ. Activated olive mill waste-based hydrochars as selective adsorbents for CO2 capture under postcombustion conditions. Chem Eng Process - Process Intensif [Internet]. 2020 Mar 1;149:107830. Available from: <URL>.
  • 97. Xu J, Shi J, Cui H, Yan N, Liu Y. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent. Chem Phys Lett [Internet]. 2018 Nov 1;711:107–12. Available from: <URL>.
  • 98. Hong S-M, Jang E, Dysart AD, Pol VG, Lee KB. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments. Sci Rep [Internet]. 2016 Oct 4;6(1):34590. Available from: <URL>.
  • 99. Deng S, Hu B, Chen T, Wang B, Huang J, Wang Y, et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption [Internet]. 2015 Feb 23;21(1–2):125–33. Available from: <URL>.
  • 100. Deng S, Wei H, Chen T, Wang B, Huang J, Yu G. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem Eng J [Internet]. 2014 Oct 1;253:46–54. Available from: <URL>.
  • 101. Zhu X-L, Wang P-Y, Peng C, Yang J, Yan X-B. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chem Lett [Internet]. 2014 Jun 1;25(6):929–32. Available from: <URL>.
  • 102. Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy [Internet]. 2012 Nov 1;99:272–9. Available from: <URL>.
  • 103. Delgado LF, Charles P, Glucina K, Morlay C. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—A review. Sci Total Environ [Internet]. 2012 Oct 1;435–436:509–25. Available from: <URL>.
  • 104. Libbrecht W, Verberckmoes A, Thybaut JW, Van Der Voort P, De Clercq J. Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. Carbon N Y [Internet]. 2017 May 1;116:528–46. Available from: <URL>.
  • 105. Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev [Internet]. 2018 May 1;87:1–21. Available from: <URL>.
  • 106. Jawad AH, Saud Abdulhameed A, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Rizwan Khan M. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese J Chem Eng [Internet]. 2021 Apr 1;32:281–90. Available from: <URL>.
  • 107. Brito MJP, Veloso CM, Santos LS, Bonomo RCF, Fontan R da CI. Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technol [Internet]. 2018 Nov 1;339:334–43. Available from: <URL>.
  • 108. Sangon S, Hunt AJ, Attard TM, Mengchang P, Ngernyen Y, Supanchaiyamat N. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod [Internet]. 2018 Jan 20;172:1128–39. Available from: <URL>.
  • 109. El-Bery HM, Saleh M, El-Gendy RA, Saleh MR, Thabet SM. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci Rep [Internet]. 2022 Mar 31;12(1):5499. Available from: <URL>.
  • 110. Abbaci F, Nait-Merzoug A, Guellati O, Harat A, El Haskouri J, Delhalle J, et al. Bio/KOH ratio effect on activated biochar and their dye based wastewater depollution. J Anal Appl Pyrolysis [Internet]. 2022 Mar 1;162:105452. Available from: <URL>.
  • 111. Sun J, Ji L, Han X, Wu Z, Cai L, Guo J, et al. Mesoporous Activated Biochar from Crab Shell with Enhanced Adsorption Performance for Tetracycline. Foods [Internet]. 2023 Mar 1;12(5):1042. Available from: <URL>.
  • 112. Balathanigaimani MS, Shim W-G, Lee M-J, Kim C, Lee J-W, Moon H. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem commun [Internet]. 2008 Jun 1;10(6):868–71. Available from: <URL>.
  • 113. Wu Y, Cao J-P, Zhuang Q-Q, Zhao X-Y, Zhou Z, Wei Y-L, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochim Acta [Internet]. 2021 Mar 1;371:137825. Available from: <URL>.
  • 114. Karnan M, Subramani K, Srividhya PK, Sathish M. Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochim Acta [Internet]. 2017 Feb 20;228:586–96. Available from: <URL>.
  • 115. Ponce MF, Mamani A, Jerez F, Castilla J, Ramos PB, Acosta GG, et al. Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor. Energy [Internet]. 2022 Dec 1;260:125092. Available from: <URL>.
  • 116. Enock TK, King’ondu CK, Pogrebnoi A, Jande YAC. Biogas-slurry derived mesoporous carbon for supercapacitor applications. Mater Today Energy [Internet]. 2017 Sep 1;5:126–37. Available from: <URL>.
  • 117. Zou Z, Luo X, Wang L, Zhang Y, Xu Z, Jiang C. Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors. J Energy Storage [Internet]. 2021 Dec 1;44:103385. Available from: <URL>.
There are 116 citations in total.

Details

Primary Language English
Subjects Separation Science, Physical Properties of Materials, Chemical Engineering (Other)
Journal Section RESEARCH ARTICLES
Authors

Sibel Başakçılardan Kabakcı 0000-0001-9717-5111

Başak Çevik 0000-0001-7238-6545

Gamze Sultan Baş Berkem 0000-0003-3907-3189

Project Number 2020/AP/0007
Publication Date February 4, 2024
Submission Date September 19, 2023
Acceptance Date November 8, 2023
Published in Issue Year 2024

Cite

Vancouver Başakçılardan Kabakcı S, Çevik B, Baş Berkem GS. Microporous and Mesoporous Activated Carbons from Tea Stalk and Tea Stalk Pulps: Effect of Lignin Removal by One-Step and Two-Step Organosolv Treatment. JOTCSA. 2024;11(1):171-88.