Omnipotent plant sources assisted green synthesis of Silver Nanoparticle - A promising Chemical Sensing tool
Year 2024,
, 899 - 918, 15.05.2024
Anitha Selvaraj
Kannan Mukunda Murthy
,
Rangasamy Rajmohan
Abstract
This article aims to analyze the various sensor applications of silver nanoparticles synthesized from green materials, particularly plant-based sources. The current shape in the field of nanotechnology is the synthesis of metal nanoparticles via environmentally friendly and more reliable green materials. The green route synthesis is found to be a promising method because of its congenial properties. It is economical, affable, and reproducible. Heavy metals have been dispersed widely in the environment, and they are well known for their virulent effects. Numerous methods are available to sense and detect those metals. The headway in the domain of nanotechnology is to synthesize AgNPs from green plants and to steer clear of the hazardous effects of metals. Efficacious synthetic routes via plant-mediated synthesized AgNPs open up easy and efficient sensing of hazardous metals in the environment. AgNPs have attracted many researchers because they have good biocompatibility and other outstanding properties. Remarkable electronic, catalytic, and optical properties have enabled AgNPs to be used as sensors in medical, biological, and chemical fields. This review highlights the application of PAGS-AgNPs as a chemical sensor for detecting heavy metals and organic compounds in the environment.
Ethical Statement
review paper
References
- 1. Ghaedi M, Yousefinejad M, Safarpoor M, Khafri HZ, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem [Internet]. 2015;31:167–72. Available from: <URL>
- 2. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology [Internet]. 2022;20(1). Available from: <URL>
- 3. Tran QH, Nguyen VQ, Le A-T. Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives ( Adv. Nat. Sci: Nanosci. Nanotechnol . 4 033001). Adv Nat Sci Nanosci Nanotechnol [Internet]. 2018;9(4):049501. Available from: <URL>
- 4. Pérez-Beltrán CH, García-Guzmán JJ, Ferreira B, Estévez-Hernández O, López-Iglesias D, Cubillana-Aguilera L, et al. One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation. Mater Sci Eng C Mater Biol Appl [Internet]. 2021;123(112023):112023. Available from: <URL>
- 5. Goudarzi M, Salavati-Niasari M, Yazdian F, Amiri M. Sonochemical assisted thermal decomposition method for green synthesis of CuCo2O4/CuO ceramic nanocomposite using Dactylopius Coccus for anti-tumor investigations. J Alloys Compd [Internet]. 2019;788:944–53. Available from: <URL>
- 6. Samuel MS, Suman S, Venkateshkannan, Selvarajan E, Mathimani T, Pugazhendhi A. Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J Photochem Photobiol B [Internet]. 2020;204(111809):111809. Available from: <URL>
- 7. Mahmoodi NO, Ghavidast A, Amirmahani N. A comparative study on the nanoparticles for improved drug delivery systems. J Photochem Photobiol B [Internet]. 2016;162:681–93. Available from: <URL>
- 8. Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol [Internet]. 2018;37(3):209–30. Available from: <URL>
- 9. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) [Internet]. 2019;55(49):6964–96. Available from: <URL>
- 10. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov [Internet]. 2022;26(102336):102336. Available from: <URL>
- 11. Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces [Internet]. 2018;171:398–405. Available from: <URL>
- 12. Sone BT, Diallo A, Fuku XG, Gurib-Fakim A, Maaza M. Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arab J Chem [Internet]. 2020;13(1):160–70. Available from: <URL>
- 13. Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) [Internet]. 2015;8(11):7278–308. Available from: <URL>
- 14. Zhang D, Ma X-L, Gu Y, Huang H, Zhang G-W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem [Internet]. 2020;8. Available from: <URL>
- 15. Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the Green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng [Internet]. 2015;2015:1–9. Available from: <URL>
- 16. Giri AK, Jena B, Biswal B, Pradhan AK, Arakha M, Acharya S, et al. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci Rep [Internet]. 2022;12(1). Available from: <URL>
- 17. Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One [Internet]. 2019;14(6):e0216496. Available from: <URL>
- 18. Joy Prabu H, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Mod Sci [Internet]. 2015;1(4):237–46. Available from: <URL>
- 19. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol [Internet]. 2015;1–6. Available from: <URL>
- 20. Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem [Internet]. 2017;10(2):253–61. Available from: <URL>
- 21. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology [Internet]. 2018;16(1). Available from: <URL>
- 22. Montes-Hernandez G, Di Girolamo M, Sarret G, Sarah Bureau, Fernandez-Martinez A, Lelong C, et al. In situ formation of silver nanoparticles (Ag-NPs) onto textile fibers. ACS Omega [Internet]. 2021;6(2):1316–27. Available from: <URL>
- 23. Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel) [Internet]. 2018;8(9):681. Available from: <URL>
- 24. Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, et al. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int J Mol Sci [Internet]. 2019;20(15):3620. Available from: <URL>
- 25. Kale SK, Assistant Professor, Department of First Year Engineering, Pimpri Chinchwad College of Engineering, Pune, Maharashtra, India, Parishwad GV, Husainy ASN, Patil AS, Principal, Pimpari Chinchwad Collge of Engineering, Pune, Maharashtra, India, et al. Emerging agriculture applications of silver nanoparticles. ES Food Agrofor [Internet]. 2021; Available from: <URL>
- 26. Naing AH, Kim CK. Application of nano-silver particles to control the postharvest biology of cut flowers: A review. Sci Hortic (Amsterdam) [Internet]. 2020;270(109463):109463. Available from: <URL>
- 27. Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, et al. The recent progress on silver nanoparticles: Synthesis and electronic applications. Nanomaterials (Basel) [Internet]. 2021;11(9):2318. Available from: <URL>
- 28. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci [Internet]. 2021;22(13):7202. Available from: <URL>
- 29. Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA. Use of silver nanoparticles in spectrophotometry. J Anal Chem [Internet]. 2017;72(11):1138–54. Available from: <URL>
- 30. Rafique M, Iqra SM, Rafique S, Tahir BM. (2017) A review on green synthesis of silver nanoparticles and their applications, Artif Cells Nanomed Biotechnol [Internet]. 2017;45(7): 1272-1291. Available from: <URL>
31. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. Int J Nanomedicine. [Internet]. 2019;14:5087-5107 Available from: <URL>
- 32. Sharma NK, Vishwakarma J, Rai S, Alomar TS, Masoud, NA, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega [Internet]. 2022;7 (31):27004-27020. Available from: <URL>
- 33. Srikar S, Giri D, Pal D, Mishra P, Upadhyay, S. (2016) Green Synthesis of Silver Nanoparticles: A Review. Green sustain. chem. [Internet]. 2016;6:34-56. Available from: <URL>
- 34. Desai R, Dutta S. Fruit and Vegetable Mediated Green Synthesis of Silver Nanoparticles – A Review. Chem Sci Rev Lett. [Internet]. 2022;11(43):303-310.
- 35. Deepa, Ameen F, Amirul IM., Dhanker R. Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties. Front. Environ. Sci. [Internet] 2022;10 (941554). Available from: <URL>
- 36. Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. KIJOMS [Internet]. 2018;4(1): 61-68, Available from: <URL>
- 37. Samrot AV, Angalene JLA, Roshini SM, Raji P,Stefi SM, Preethi R, Selvarani AJ, Madankumar A. Bioactivity and Heavy Metal Removal Using Plant Gum Mediated Green Synthesized Silver Nanoparticles. J Clust Sci [Internet] 2019;30:1599–1610. Available from: <URL>
- 38. Saquib HM, Md. Noushad J, Md. Sabir A, Poonam R, Sanjay R, Sadath A, Amit Kumar N, Sarwar B. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng.C. [Internet]. 2019;99:1105-1114. Available from: <URL>
- 39. Manik, U., Nande, A., Raut, S., & Dhoble, S.J. (2020). Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. [Internet]. 2020:6;100086, Available from: <URL>
- 40. Devanesan S, AlSalhi MS. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. Int J Nanomedicine. [Internet]. 2021;16:3343-3356. Available from: <URL>
- 41. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, et al. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces [Internet]. 2012;4(12):7007–10. Available from: <URL>
- 42. Sharma N, Kaushik S. Synthesis of bio nano particles with special reference to gold and silver metal. Mater Today [Internet]. 2020;29:477–80. Available from: <URL>
- 43. Paknejad SA, Mannan SH. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron Reliab [Internet]. 2017;70:1–11. Available from: <URL>
- 44. Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, et al. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines [Internet]. 2022;10(11):2792. Available from: <URL>
- 45. Kareem MA, Bello IT, Shittu HA, Awodele MK, Adedokun O, Sanusi YK. Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: a review. IOP Conf Ser Mater Sci Eng [Internet]. 2020;805(1):012020. Available from: <URL>
- 46. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, et al. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol [Internet]. 2018;46(sup3):855–72. Available from: <URL>
- 47. Jaffri SB, Ahmad KS. Phytofunctionalized silver nanoparticles: green biomaterial for biomedical and environmental applications. Rev Inorg Chem [Internet]. 2018;38(3):127–49. Available from: <URL>
- 48. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res Lett [Internet]. 2016;11(1). Available from: <URL>
- 49. Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. Inorg Nano-met Chem [Internet]. 2021;51(1):133–42. Available from: <URL>
- 50. Fahimirad S, Ajalloueian F, Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf [Internet]. 2019;168:260–78. Available from: <URL>
- 51. Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst Lett [Internet]. 2021;9(1). Available from: <URL>
- 52. Abbas A, Amin HMA. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J [Internet]. 2022;175(107166):107166. Available from: <URL>
- 53. Zahran M, Khalifa Z, Zahran MA-H, Abdel Azzem M. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: a review. Mater Adv [Internet]. 2021;2(22):7350–65. Available from: <URL>
- 54. Yu C-X, Xiong F, Liu L-L. Electrochemical biosensors with silver nanoparticles as signal labels. Int J Electrochem Sci [Internet]. 2020;15(5):3869–90. Available from: <URL>
- 55. Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, et al. Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: An overview. J Fluoresc [Internet]. 2021;31(3):635–49. Available from: <URL>
- 56. Jouyban A, Rahimpour E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta [Internet]. 2020;217(121071):121071. Available from: <URL>
- 57. Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. Nanoparticle-based sensors for food contaminants. Trends Analyt Chem [Internet]. 2019;113:74–83. Available from: <URL>
- 58. Fetalbero Reyes D. Green-synthesized silver nanoparticles as sensor probes for the naked-eye detection of hydrogen peroxide. Orient J Chem [Internet]. 2020;36(04):640–4. Available from: <URL>
- 59. Koshy O. Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor. Int J Biosens Bioelectron [Internet]. 2017;2(3). Available from: <URL>
- 60. Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem [Internet]. 2013;183:144–9. Available from: <URL>
- 61. Mahadevan S, Vijayakumar S, Arulmozhi P. Green synthesis of silver nano particles from Atalantia monophylla (L) Correa leaf extract, their antimicrobial activity and sensing capability of H2O2. Microb Pathog [Internet]. 2017;113:445–50. Available from: <URL>
- 62. Shukla VK, Yadav RS, Yadav P, Pandey AC. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J Hazard Mater [Internet]. 2012;213–214:161–6. Available from: <URL>
- 63. Srikhao N, Kasemsiri P, Lorwanishpaisarn N, Okhawilai M. Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. Res Chem Intermed [Internet]. 2021;47(3):1269–83. Available from: <URL>
- 64. Ismail M, Khan MI, Akhtar K, Seo J, Khan MA, Asiri AM, et al. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. J Mater Sci: Mater Electron [Internet]. 2019;30(8):7367–83. Available from: <URL>
- 65. Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol [Internet]. 2012;51(4):583–9. Available from: <URL>
- 66. Gupta AP, Verma DK. Carboxymethylguargum-silver nanocomposite: green synthesis, characterization and an optical sensor for ammonia detection. Adv Nat Sci Nanosci Nanotechnol [Internet]. 2014;5(3):035018. Available from: <URL>
- 67. Alzahrani E. Colorimetric detection of ammonia using synthesized silver nanoparticles from durian fruit shell. J Chem [Internet]. 2020;2020:1–11. Available from: <URL>
- 68. Edison TNJI, Atchudan R, Lee YR. Optical sensor for dissolved ammonia through the Green synthesis of silver nanoparticles by fruit extract of Terminalia chebula. J Cluster Sci [Internet]. 2016;27(2):683–90. Available from: <URL>
- 69. Ismail M, Khan MI, Akhtar K, Khan MA, Asiri AM, Khan SB. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Physica E Low Dimens Syst Nanostruct [Internet]. 2018;103:367–76. Available from: <URL>
- 70. Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep [Internet]. 2021;11(1). Available from: <URL>
- 71. Shivakumar M, Dharmaprakash MS, Manjappa S, Nagashree KL. Green synthesis of silver nanoparticles (SNPs)-modified electrode for electrochemical detection of nitrobenzene. J Iran Chem Soc [Internet]. 2020;17(4):893–900. Available from: <URL>
- 72. Adhikari A, Lamichhane L, Adhikari A, Gyawali G, Acharya D, Baral ER, et al. Green synthesis of silver nanoparticles using Artemisia vulgaris extract and its application toward catalytic and metal-sensing activity. Inorganics [Internet]. 2022;10(8):113. Available from: <URL>
- 73. Handayani W, Intan Pratiwi N, Yulkifli, Ramli, Benti Etika S, Imawan C. A silver nanoparticle-based colorimetric detection of Fe2+. J Phys Conf Ser [Internet]. 2019;1317(1):012093. Available from: <URL>
- 74. Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe2+ and Fe3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. New J Chem [Internet]. 2021;45(22):9936–43. Available from: <URL>
- 75. Tamilselvan S, Soniya RM, Vasantharaja R, Kannan M, Supriya S, Dass Batvari BP. Silver nanoparticles based spectroscopic sensing of eight metal ions in aqueous solutions. Environ Res [Internet]. 2022;212:113585. Available from: <URL>
- 76. Ahmed F, Kabir H, Xiong H. Dual colorimetric sensor for Hg2+/Pb2+ and an efficient catalyst based on silver nanoparticles mediating by the root extract of Bistorta amplexicaulis. Front Chem [Internet]. 2020;8. Available from: <URL>
- 77. Abbasi A, Hanif S, Shakir M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green detection. RSC Adv [Internet]. 2020;10(6):3137–44. Available from: <URL>
Year 2024,
, 899 - 918, 15.05.2024
Anitha Selvaraj
Kannan Mukunda Murthy
,
Rangasamy Rajmohan
References
- 1. Ghaedi M, Yousefinejad M, Safarpoor M, Khafri HZ, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem [Internet]. 2015;31:167–72. Available from: <URL>
- 2. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology [Internet]. 2022;20(1). Available from: <URL>
- 3. Tran QH, Nguyen VQ, Le A-T. Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives ( Adv. Nat. Sci: Nanosci. Nanotechnol . 4 033001). Adv Nat Sci Nanosci Nanotechnol [Internet]. 2018;9(4):049501. Available from: <URL>
- 4. Pérez-Beltrán CH, García-Guzmán JJ, Ferreira B, Estévez-Hernández O, López-Iglesias D, Cubillana-Aguilera L, et al. One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation. Mater Sci Eng C Mater Biol Appl [Internet]. 2021;123(112023):112023. Available from: <URL>
- 5. Goudarzi M, Salavati-Niasari M, Yazdian F, Amiri M. Sonochemical assisted thermal decomposition method for green synthesis of CuCo2O4/CuO ceramic nanocomposite using Dactylopius Coccus for anti-tumor investigations. J Alloys Compd [Internet]. 2019;788:944–53. Available from: <URL>
- 6. Samuel MS, Suman S, Venkateshkannan, Selvarajan E, Mathimani T, Pugazhendhi A. Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J Photochem Photobiol B [Internet]. 2020;204(111809):111809. Available from: <URL>
- 7. Mahmoodi NO, Ghavidast A, Amirmahani N. A comparative study on the nanoparticles for improved drug delivery systems. J Photochem Photobiol B [Internet]. 2016;162:681–93. Available from: <URL>
- 8. Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol [Internet]. 2018;37(3):209–30. Available from: <URL>
- 9. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) [Internet]. 2019;55(49):6964–96. Available from: <URL>
- 10. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov [Internet]. 2022;26(102336):102336. Available from: <URL>
- 11. Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces [Internet]. 2018;171:398–405. Available from: <URL>
- 12. Sone BT, Diallo A, Fuku XG, Gurib-Fakim A, Maaza M. Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arab J Chem [Internet]. 2020;13(1):160–70. Available from: <URL>
- 13. Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) [Internet]. 2015;8(11):7278–308. Available from: <URL>
- 14. Zhang D, Ma X-L, Gu Y, Huang H, Zhang G-W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem [Internet]. 2020;8. Available from: <URL>
- 15. Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the Green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng [Internet]. 2015;2015:1–9. Available from: <URL>
- 16. Giri AK, Jena B, Biswal B, Pradhan AK, Arakha M, Acharya S, et al. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci Rep [Internet]. 2022;12(1). Available from: <URL>
- 17. Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One [Internet]. 2019;14(6):e0216496. Available from: <URL>
- 18. Joy Prabu H, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Mod Sci [Internet]. 2015;1(4):237–46. Available from: <URL>
- 19. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol [Internet]. 2015;1–6. Available from: <URL>
- 20. Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem [Internet]. 2017;10(2):253–61. Available from: <URL>
- 21. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology [Internet]. 2018;16(1). Available from: <URL>
- 22. Montes-Hernandez G, Di Girolamo M, Sarret G, Sarah Bureau, Fernandez-Martinez A, Lelong C, et al. In situ formation of silver nanoparticles (Ag-NPs) onto textile fibers. ACS Omega [Internet]. 2021;6(2):1316–27. Available from: <URL>
- 23. Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel) [Internet]. 2018;8(9):681. Available from: <URL>
- 24. Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, et al. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int J Mol Sci [Internet]. 2019;20(15):3620. Available from: <URL>
- 25. Kale SK, Assistant Professor, Department of First Year Engineering, Pimpri Chinchwad College of Engineering, Pune, Maharashtra, India, Parishwad GV, Husainy ASN, Patil AS, Principal, Pimpari Chinchwad Collge of Engineering, Pune, Maharashtra, India, et al. Emerging agriculture applications of silver nanoparticles. ES Food Agrofor [Internet]. 2021; Available from: <URL>
- 26. Naing AH, Kim CK. Application of nano-silver particles to control the postharvest biology of cut flowers: A review. Sci Hortic (Amsterdam) [Internet]. 2020;270(109463):109463. Available from: <URL>
- 27. Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, et al. The recent progress on silver nanoparticles: Synthesis and electronic applications. Nanomaterials (Basel) [Internet]. 2021;11(9):2318. Available from: <URL>
- 28. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci [Internet]. 2021;22(13):7202. Available from: <URL>
- 29. Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA. Use of silver nanoparticles in spectrophotometry. J Anal Chem [Internet]. 2017;72(11):1138–54. Available from: <URL>
- 30. Rafique M, Iqra SM, Rafique S, Tahir BM. (2017) A review on green synthesis of silver nanoparticles and their applications, Artif Cells Nanomed Biotechnol [Internet]. 2017;45(7): 1272-1291. Available from: <URL>
31. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. Int J Nanomedicine. [Internet]. 2019;14:5087-5107 Available from: <URL>
- 32. Sharma NK, Vishwakarma J, Rai S, Alomar TS, Masoud, NA, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega [Internet]. 2022;7 (31):27004-27020. Available from: <URL>
- 33. Srikar S, Giri D, Pal D, Mishra P, Upadhyay, S. (2016) Green Synthesis of Silver Nanoparticles: A Review. Green sustain. chem. [Internet]. 2016;6:34-56. Available from: <URL>
- 34. Desai R, Dutta S. Fruit and Vegetable Mediated Green Synthesis of Silver Nanoparticles – A Review. Chem Sci Rev Lett. [Internet]. 2022;11(43):303-310.
- 35. Deepa, Ameen F, Amirul IM., Dhanker R. Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties. Front. Environ. Sci. [Internet] 2022;10 (941554). Available from: <URL>
- 36. Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. KIJOMS [Internet]. 2018;4(1): 61-68, Available from: <URL>
- 37. Samrot AV, Angalene JLA, Roshini SM, Raji P,Stefi SM, Preethi R, Selvarani AJ, Madankumar A. Bioactivity and Heavy Metal Removal Using Plant Gum Mediated Green Synthesized Silver Nanoparticles. J Clust Sci [Internet] 2019;30:1599–1610. Available from: <URL>
- 38. Saquib HM, Md. Noushad J, Md. Sabir A, Poonam R, Sanjay R, Sadath A, Amit Kumar N, Sarwar B. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng.C. [Internet]. 2019;99:1105-1114. Available from: <URL>
- 39. Manik, U., Nande, A., Raut, S., & Dhoble, S.J. (2020). Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. [Internet]. 2020:6;100086, Available from: <URL>
- 40. Devanesan S, AlSalhi MS. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. Int J Nanomedicine. [Internet]. 2021;16:3343-3356. Available from: <URL>
- 41. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, et al. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces [Internet]. 2012;4(12):7007–10. Available from: <URL>
- 42. Sharma N, Kaushik S. Synthesis of bio nano particles with special reference to gold and silver metal. Mater Today [Internet]. 2020;29:477–80. Available from: <URL>
- 43. Paknejad SA, Mannan SH. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron Reliab [Internet]. 2017;70:1–11. Available from: <URL>
- 44. Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, et al. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines [Internet]. 2022;10(11):2792. Available from: <URL>
- 45. Kareem MA, Bello IT, Shittu HA, Awodele MK, Adedokun O, Sanusi YK. Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: a review. IOP Conf Ser Mater Sci Eng [Internet]. 2020;805(1):012020. Available from: <URL>
- 46. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, et al. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol [Internet]. 2018;46(sup3):855–72. Available from: <URL>
- 47. Jaffri SB, Ahmad KS. Phytofunctionalized silver nanoparticles: green biomaterial for biomedical and environmental applications. Rev Inorg Chem [Internet]. 2018;38(3):127–49. Available from: <URL>
- 48. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res Lett [Internet]. 2016;11(1). Available from: <URL>
- 49. Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. Inorg Nano-met Chem [Internet]. 2021;51(1):133–42. Available from: <URL>
- 50. Fahimirad S, Ajalloueian F, Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf [Internet]. 2019;168:260–78. Available from: <URL>
- 51. Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst Lett [Internet]. 2021;9(1). Available from: <URL>
- 52. Abbas A, Amin HMA. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J [Internet]. 2022;175(107166):107166. Available from: <URL>
- 53. Zahran M, Khalifa Z, Zahran MA-H, Abdel Azzem M. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: a review. Mater Adv [Internet]. 2021;2(22):7350–65. Available from: <URL>
- 54. Yu C-X, Xiong F, Liu L-L. Electrochemical biosensors with silver nanoparticles as signal labels. Int J Electrochem Sci [Internet]. 2020;15(5):3869–90. Available from: <URL>
- 55. Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, et al. Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: An overview. J Fluoresc [Internet]. 2021;31(3):635–49. Available from: <URL>
- 56. Jouyban A, Rahimpour E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta [Internet]. 2020;217(121071):121071. Available from: <URL>
- 57. Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. Nanoparticle-based sensors for food contaminants. Trends Analyt Chem [Internet]. 2019;113:74–83. Available from: <URL>
- 58. Fetalbero Reyes D. Green-synthesized silver nanoparticles as sensor probes for the naked-eye detection of hydrogen peroxide. Orient J Chem [Internet]. 2020;36(04):640–4. Available from: <URL>
- 59. Koshy O. Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor. Int J Biosens Bioelectron [Internet]. 2017;2(3). Available from: <URL>
- 60. Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem [Internet]. 2013;183:144–9. Available from: <URL>
- 61. Mahadevan S, Vijayakumar S, Arulmozhi P. Green synthesis of silver nano particles from Atalantia monophylla (L) Correa leaf extract, their antimicrobial activity and sensing capability of H2O2. Microb Pathog [Internet]. 2017;113:445–50. Available from: <URL>
- 62. Shukla VK, Yadav RS, Yadav P, Pandey AC. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J Hazard Mater [Internet]. 2012;213–214:161–6. Available from: <URL>
- 63. Srikhao N, Kasemsiri P, Lorwanishpaisarn N, Okhawilai M. Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. Res Chem Intermed [Internet]. 2021;47(3):1269–83. Available from: <URL>
- 64. Ismail M, Khan MI, Akhtar K, Seo J, Khan MA, Asiri AM, et al. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. J Mater Sci: Mater Electron [Internet]. 2019;30(8):7367–83. Available from: <URL>
- 65. Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol [Internet]. 2012;51(4):583–9. Available from: <URL>
- 66. Gupta AP, Verma DK. Carboxymethylguargum-silver nanocomposite: green synthesis, characterization and an optical sensor for ammonia detection. Adv Nat Sci Nanosci Nanotechnol [Internet]. 2014;5(3):035018. Available from: <URL>
- 67. Alzahrani E. Colorimetric detection of ammonia using synthesized silver nanoparticles from durian fruit shell. J Chem [Internet]. 2020;2020:1–11. Available from: <URL>
- 68. Edison TNJI, Atchudan R, Lee YR. Optical sensor for dissolved ammonia through the Green synthesis of silver nanoparticles by fruit extract of Terminalia chebula. J Cluster Sci [Internet]. 2016;27(2):683–90. Available from: <URL>
- 69. Ismail M, Khan MI, Akhtar K, Khan MA, Asiri AM, Khan SB. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Physica E Low Dimens Syst Nanostruct [Internet]. 2018;103:367–76. Available from: <URL>
- 70. Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep [Internet]. 2021;11(1). Available from: <URL>
- 71. Shivakumar M, Dharmaprakash MS, Manjappa S, Nagashree KL. Green synthesis of silver nanoparticles (SNPs)-modified electrode for electrochemical detection of nitrobenzene. J Iran Chem Soc [Internet]. 2020;17(4):893–900. Available from: <URL>
- 72. Adhikari A, Lamichhane L, Adhikari A, Gyawali G, Acharya D, Baral ER, et al. Green synthesis of silver nanoparticles using Artemisia vulgaris extract and its application toward catalytic and metal-sensing activity. Inorganics [Internet]. 2022;10(8):113. Available from: <URL>
- 73. Handayani W, Intan Pratiwi N, Yulkifli, Ramli, Benti Etika S, Imawan C. A silver nanoparticle-based colorimetric detection of Fe2+. J Phys Conf Ser [Internet]. 2019;1317(1):012093. Available from: <URL>
- 74. Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe2+ and Fe3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. New J Chem [Internet]. 2021;45(22):9936–43. Available from: <URL>
- 75. Tamilselvan S, Soniya RM, Vasantharaja R, Kannan M, Supriya S, Dass Batvari BP. Silver nanoparticles based spectroscopic sensing of eight metal ions in aqueous solutions. Environ Res [Internet]. 2022;212:113585. Available from: <URL>
- 76. Ahmed F, Kabir H, Xiong H. Dual colorimetric sensor for Hg2+/Pb2+ and an efficient catalyst based on silver nanoparticles mediating by the root extract of Bistorta amplexicaulis. Front Chem [Internet]. 2020;8. Available from: <URL>
- 77. Abbasi A, Hanif S, Shakir M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green detection. RSC Adv [Internet]. 2020;10(6):3137–44. Available from: <URL>