Elucidation of Cu-AMT Structure by Voltammetric Method
Year 2024,
, 1313 - 1320, 30.08.2024
Kübra Gençdağ Şensoy
,
Ali Karagözler
Abstract
The long-term anthropogenic release of metals has increased their distribution and concentration in ecosystems, leading to sustained interest in their behavior and impact. Metals are not biodegradable and are converted from one chemical state to another. Even in low concentrations, heavy metals carry high danger. Therefore, the need for continuous control of trace metals in the environment is increasing. In this technique, the metal to be analyzed is deposited on the electrode surface in the form of metal complexes, and determinations are made using the peak currents obtained by potential scanning in the cathodic or anodic direction. The sensitivity and selectivity of the assay are increased by the choice of the ligand used as the complexing agent. In the study carried out to elucidate the structure of the complex formed by Cu(II) with 5-amino-1,3,4-thiadiazole-2-thiol (AMT), it was estimated that the complex structure could probably be in the ratio of 1:1. In addition, studies have been carried out to determine the stability of the complexes to be formed in various environments since the stability of the complex is related to the species in the solution comprising the medium, its concentration and the pH of the solution.
Supporting Institution
Adnan Menderes University, Scientific Research Unit
Project Number
Project no. FEF 12020.
Thanks
Supporting organization information is given in the article.
References
- 1. Thongngamdee S. Novel electrochemical sensors for environmental monitoring [Internet]. [New Mexico]: New Mexico State University; 2006. Available from: <URL>.
- 2. Hou X, Jones BT. Inductively Coupled plasma/optical emission spectrometry. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry [Internet]. Chichester: John Wiley & Sons Ltd; 2000. p. 9468–85. Available from: <URL>.
- 3. Chen S, Liu C, Yang M, Lu D, Zhu L, Wang Z. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry. J Hazard Mater [Internet]. 2009 Oct 15;170(1):247–51. Available from: <URL>.
- 4. Tautkus S, Kazlauskas R, Kareiva A. Determination of copper in tea leaves by flame atomic absorption spectrometry. Chemija [Internet]. 2004;15(4):49–52. Available from: <URL>.
- 5. Ariño C, Serrano N, Díaz-Cruz JM, Esteban M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta [Internet]. 2017 Oct 16;990:11–53. Available from: <URL>.
- 6. Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: Advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip [Internet]. 2024 Feb 27;24(5):1175–206. Available from: <URL>.
- 7. Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, et al. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front [Internet]. 2019 Dec 3;6(12):3418–39. Available from: <URL>.
- 8. Fleet B, Gunasingham H. Electrochemical sensors for monitoring environmental pollutants. Talanta [Internet]. 1992 Nov 1;39(11):1449–57. Available from: <URL>.
- 9. Tercier M ‐L., Buffle J. In situ voltammetric measurements in natural waters: Future prospects and challenges. Electroanalysis [Internet]. 1993 Apr 9;5(3):187–200. Available from: <URL>.
- 10. Olsen KB, Wang J, Setiadji R, Lu J. Field screening of chromium, cadmium, zinc, copper, and lead in sediments by stripping analysis. Environ Sci Technol [Internet]. 1994 Nov 1;28(12):2074–9. Available from: <URL>.
- 11. Tzvetkova P, Vassileva P, Nickolov R. Modified silica gel with 5-amino-1,3,4-thiadiazole-2-thiol for heavy metal ions removal. J Porous Mater [Internet]. 2010 Aug 7;17(4):459–63. Available from: <URL>.
- 12. Dogan CE, Akcin G. Sorption and Desorption of Lead on 5-Amino-1,3,4-Thiadiazole-2-Thiol Immobilized Silica Gel by Flame Atomic Absorption Spectrometry (FAAS). Instrum Sci Technol [Internet]. 2008 Jul 25;36(5):476–92. Available from: <URL>.
- 13. Padilha P de M, Gomes LA de M, Padilha CCF, Moreira JC, Filho NLD. Determination of metal ions in natural waters by flame-AAS after preconcentration on a 5-amino-1,3,4-thiadiazole-2-thiol modified silica gel. Anal Lett [Internet]. 1999;32(9):1807–20. Available from: <URL>.
- 14. Kalimuthu P, John SA. Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Anal Chim Acta [Internet]. 2009 Aug 4;647(1):97–103. Available from: <URL>.
- 15. Kalimuthu P, Abraham John S. Highly sensitive and selective amperometric determination of nitrite using electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Electrochem commun [Internet]. 2009 May 1;11(5):1065–8. Available from: <URL>.
- 16. Kalimuthu P, Abraham John S. Selective electrochemical determination of paracetamol using nanostructured film of functionalized thiadiazole modified electrode. Electroanalysis [Internet]. 2010 Feb 22;22(3):303–9. Available from: <URL>.
- 17. Kalimuthu P, Abraham John S. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode. J Chem Sci [Internet]. 2011 May 29;123(3):349–55. Available from: <URL>.
- 18. Kannan P, John SA. Ultrasensitive detection of l-cysteine using gold–5-amino-2-mercapto-1,3,4-thiadiazole core–shell nanoparticles film modified electrode. Biosens Bioelectron [Internet]. 2011 Dec 15;30(1):276–81. Available from: <URL>.
- 19. Revin SB, John SA. Electropolymerization of 3-amino-5-mercapto-1,2,4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid. Electrochim Acta [Internet]. 2011 Oct 1;56(24):8934–40. Available from: <URL>.
- 20. He JB, Qi F, Wang Y, Deng N. Solid carbon paste-based amperometric sensor with electropolymerized film of 2-amino-5-mercapto-1,3,4-thiadiazole. Sensors Actuators B Chem [Internet]. 2010 Mar 4;145(1):480–7. Available from: <URL>.
- 21. Chufán EE, Pedregosa JC, Borrás J. Spectroscopic behaviour of metal–drug complexes. Infrared spectra of Cu(II) complexes with 5-amino-1,3,4-thiadiazole-2-thiol (Hatm). Vib Spectrosc [Internet]. 1997 Dec 1;15(2):191–9. Available from: <URL>.
- 22. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry [Internet]. 6th ed. Gosport: Pearson Education Limited; 2010. Available from: <URL>.
Year 2024,
, 1313 - 1320, 30.08.2024
Kübra Gençdağ Şensoy
,
Ali Karagözler
Project Number
Project no. FEF 12020.
References
- 1. Thongngamdee S. Novel electrochemical sensors for environmental monitoring [Internet]. [New Mexico]: New Mexico State University; 2006. Available from: <URL>.
- 2. Hou X, Jones BT. Inductively Coupled plasma/optical emission spectrometry. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry [Internet]. Chichester: John Wiley & Sons Ltd; 2000. p. 9468–85. Available from: <URL>.
- 3. Chen S, Liu C, Yang M, Lu D, Zhu L, Wang Z. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry. J Hazard Mater [Internet]. 2009 Oct 15;170(1):247–51. Available from: <URL>.
- 4. Tautkus S, Kazlauskas R, Kareiva A. Determination of copper in tea leaves by flame atomic absorption spectrometry. Chemija [Internet]. 2004;15(4):49–52. Available from: <URL>.
- 5. Ariño C, Serrano N, Díaz-Cruz JM, Esteban M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta [Internet]. 2017 Oct 16;990:11–53. Available from: <URL>.
- 6. Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: Advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip [Internet]. 2024 Feb 27;24(5):1175–206. Available from: <URL>.
- 7. Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, et al. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front [Internet]. 2019 Dec 3;6(12):3418–39. Available from: <URL>.
- 8. Fleet B, Gunasingham H. Electrochemical sensors for monitoring environmental pollutants. Talanta [Internet]. 1992 Nov 1;39(11):1449–57. Available from: <URL>.
- 9. Tercier M ‐L., Buffle J. In situ voltammetric measurements in natural waters: Future prospects and challenges. Electroanalysis [Internet]. 1993 Apr 9;5(3):187–200. Available from: <URL>.
- 10. Olsen KB, Wang J, Setiadji R, Lu J. Field screening of chromium, cadmium, zinc, copper, and lead in sediments by stripping analysis. Environ Sci Technol [Internet]. 1994 Nov 1;28(12):2074–9. Available from: <URL>.
- 11. Tzvetkova P, Vassileva P, Nickolov R. Modified silica gel with 5-amino-1,3,4-thiadiazole-2-thiol for heavy metal ions removal. J Porous Mater [Internet]. 2010 Aug 7;17(4):459–63. Available from: <URL>.
- 12. Dogan CE, Akcin G. Sorption and Desorption of Lead on 5-Amino-1,3,4-Thiadiazole-2-Thiol Immobilized Silica Gel by Flame Atomic Absorption Spectrometry (FAAS). Instrum Sci Technol [Internet]. 2008 Jul 25;36(5):476–92. Available from: <URL>.
- 13. Padilha P de M, Gomes LA de M, Padilha CCF, Moreira JC, Filho NLD. Determination of metal ions in natural waters by flame-AAS after preconcentration on a 5-amino-1,3,4-thiadiazole-2-thiol modified silica gel. Anal Lett [Internet]. 1999;32(9):1807–20. Available from: <URL>.
- 14. Kalimuthu P, John SA. Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Anal Chim Acta [Internet]. 2009 Aug 4;647(1):97–103. Available from: <URL>.
- 15. Kalimuthu P, Abraham John S. Highly sensitive and selective amperometric determination of nitrite using electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Electrochem commun [Internet]. 2009 May 1;11(5):1065–8. Available from: <URL>.
- 16. Kalimuthu P, Abraham John S. Selective electrochemical determination of paracetamol using nanostructured film of functionalized thiadiazole modified electrode. Electroanalysis [Internet]. 2010 Feb 22;22(3):303–9. Available from: <URL>.
- 17. Kalimuthu P, Abraham John S. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode. J Chem Sci [Internet]. 2011 May 29;123(3):349–55. Available from: <URL>.
- 18. Kannan P, John SA. Ultrasensitive detection of l-cysteine using gold–5-amino-2-mercapto-1,3,4-thiadiazole core–shell nanoparticles film modified electrode. Biosens Bioelectron [Internet]. 2011 Dec 15;30(1):276–81. Available from: <URL>.
- 19. Revin SB, John SA. Electropolymerization of 3-amino-5-mercapto-1,2,4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid. Electrochim Acta [Internet]. 2011 Oct 1;56(24):8934–40. Available from: <URL>.
- 20. He JB, Qi F, Wang Y, Deng N. Solid carbon paste-based amperometric sensor with electropolymerized film of 2-amino-5-mercapto-1,3,4-thiadiazole. Sensors Actuators B Chem [Internet]. 2010 Mar 4;145(1):480–7. Available from: <URL>.
- 21. Chufán EE, Pedregosa JC, Borrás J. Spectroscopic behaviour of metal–drug complexes. Infrared spectra of Cu(II) complexes with 5-amino-1,3,4-thiadiazole-2-thiol (Hatm). Vib Spectrosc [Internet]. 1997 Dec 1;15(2):191–9. Available from: <URL>.
- 22. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry [Internet]. 6th ed. Gosport: Pearson Education Limited; 2010. Available from: <URL>.