Research Article
BibTex RIS Cite

Synthesis, Biological Evaluation, and Molecular Docking Studies of New Nitro Vanillin Analogues as Anti-glycating Agents

Year 2024, , 1255 - 1266, 30.08.2024
https://doi.org/10.18596/jotcsa.1402128

Abstract

Persistent hyperglycemia is linked to a range of chronic complications in diabetes, such as neuropathy, retinopathy, nephropathy, and atherosclerosis. The underlying cause is the highly stable advanced glycation end products (AGEs) resulting from prolonged exposure to high glucose level. Hence the present study was undertaken on the anti-glycation activity of a series of synthetic analogues (Schiff bases) 4a-4o of nitrovanillin synthesized by its coupling with different amino reagents. Nitrovanillin was obtained by the nitration of vanillin. Vanillin is a natural product that was obtained by the reduction of vanillic acid. Vanillic acid is another natural product which was isolated from ethanol extract of plant species Tamarix aphylla during the current study. These analogues were screened for in-vitro anti-glycation activity using rutin (IC50 = 180±0.8 µM) as a reference molecule. The best potent analogues 4a (IC50 = 121±1.0 µM), 4f (IC50 = 95.0±0.7 µM), and 4h (IC50 = 183±3.8 µM) were subjected to computational study that revealed they were not only anti-glycation active, but also having well in ligand–protein interaction profile. While, all others analogues were found moderate to highly active. When the safety profile of these analogues 4a-4o was evaluated by MTT assay using HepG2 cells against doxorubicin as a reference drug, the analogues 4a, 4e, 4f, 4i, 4l, 4m, and 4o were found nontoxic, while analogues 4d, 4h, 4k, and 4n showed insignificant toxicity.

Ethical Statement

NO

Supporting Institution

NO

References

  • 1. Ahmad S, Moinuddin, Dixit K, Shahab U, Alam K, Ali A. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem Biophys Res Commun [Internet]. 2011 Apr 15;407(3):568–74. Available from: <URL>.
  • 2. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells [Internet]. 2022 Apr 12;11(8):1312. Available from: <URL>.
  • 3. Lin J, Wu C, Lu C, Hsia S, Yen G. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res [Internet]. 2016 Aug 25;60(8):1850–64. Available from: <URL>.
  • 4. Peppa M, Vlassara H. Advanced glycation end products and diabetic complications: A General overview. Hormones [Internet]. 2005;4(1):28–37. Available from: <URL>.
  • 5. International diabetes federation. Diabetes Atlas [Internet]. Brussels: Belgium: International Diabetes Federation; 2015. Available from: <URL>.
  • 6. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal [Internet]. 2017 Jan 1;25(1):84–92. Available from: <URL>.
  • 7. Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med [Internet]. 2021 Sep 7;21(3):415–33. Available from: <URL>.
  • 8. Cade WT. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys Ther [Internet]. 2008 Nov 1;88(11):1322–35. Available from: <URL>.
  • 9. Rondeau P, Bourdon E. The glycation of albumin: Structural and functional impacts. Biochimie [Internet]. 2011 Apr 1;93(4):645–58. Available from: <URL>.
  • 10. Eble AS, Thorpe SR, Baynes JW. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem [Internet]. 1983 Aug 10;258(15):9406–12. Available from: <URL>.
  • 11. Schmidt AM, Yan S Du, Wautier JL, Stern D. Activation of Receptor for Advanced Glycation End Products. Circ Res [Internet]. 1999 Mar 19;84(5):489–97. Available from: <URL>.
  • 12. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract [Internet]. 2014 Feb 1;103(2):137–49. Available from: <URL>.
  • 13. Vlassara H, Uribarri J. Glycoxidation and Diabetic Complications: Modern Lessons and a Warning? Rev Endocr Metab Disord [Internet]. 2004 Aug;5(3):181–8. Available from: <URL>.
  • 14. O’Brien J, Morrissey PA, Ames JM. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr [Internet]. 1989 Jan 1;28(3):211–48. Available from: <URL>.
  • 15. Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. Pharm Biol [Internet]. 2016 Feb 8;54(2):198–206. Available from: <URL>.
  • 16. Ahmad S, Shahab U, Baig MH, Khan MS, Khan MS, Srivastava AK, et al. Inhibitory Effect of Metformin and Pyridoxamine in the Formation of Early, Intermediate and Advanced Glycation End-Products. Agarwal PK, editor. PLoS One [Internet]. 2013 Sep 4;8(9):e72128. Available from: <URL>.
  • 17. Ahmad S, Khan MS, Akhter F, Khan MS, Khan A, Ashraf JM, et al. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology [Internet]. 2014 Nov 1;24(11):979–90. Available from: <URL>.
  • 18. Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs [Internet]. 2008 Sep 2;13(3):447–63. Available from: <URL>.
  • 19. da Silva CM, da Silva DL, Modolo L V., Alves RB, de Resende MA, Martins CVB, et al. Schiff bases: A short review of their antimicrobial activities. J Adv Res [Internet]. 2011 Jan 1;2(1):1–8. Available from: <URL>.
  • 20. Neelakantan M, Esakkiammal M, Mariappan S, Dharmaraja J, Jeyakumar T. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes. Indian J Pharm Sci [Internet]. 2010 Feb 1;72(2):216–22. Available from: <URL>.
  • 21. Liang C, Xia J, Lei D, Li X, Yao Q, Gao J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur J Med Chem [Internet]. 2014 Mar 3;74:742–50. Available from: <URL>.
  • 22. Fugu MB, Ndahi NP, Paul BB, Mustapha AN. Synthesis, characterization, and antimicrobial studies of some vanillin schiff base metal (II) complexes. Available online www.jocpr.com J Chem Pharm Res [Internet]. 2013;5(4):22–8. Available from: <URL>.
  • 23. Song WJ, Cheng JP, Jiang DH, Guo L, Cai MF, Yang HB, et al. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Mar 5;121:70–6. Available from: <URL>.
  • 24. Jhaumeer-Laulloo S, Gupta Bhowon M, Mungur S, Fawzi Mahomoodally M, Hussein Subratty A. In vitro Anti-glycation and Anti-oxidant Properties of Synthesized Schiff Bases. Med Chem (Los Angeles) [Internet]. 2012;8(3):409–14. Available from: <URL>.
  • 25. Rakshit S, Lakshminarasimhan T, Guturi S, Kanagavel K, Kanusu UR, Niyogi AG, et al. Nitration Using Fuming HNO 3 in Sulfolane: Synthesis of 6-Nitrovanillin in Flow Mode. Org Process Res Dev [Internet]. 2018 Mar 16;22(3):391–8. Available from: <URL>.
  • 26. Ribeiro TS, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Heise N, Freire de Lima ME. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett [Internet]. 2004 Jul 5;14(13):3555–8. Available from: <URL>.
  • 27. Shah MS, Rahman MM, Islam MD, Al-Macktuf A, Ahmed JU, Nishino H, et al. Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. J Mol Struct [Internet]. 2022 Jan 15;1248:131465. Available from: <URL>.
  • 28. Jahan H, Siddiqui NN, Iqbal S, Basha FZ, Shaikh S, Pizzi M, et al. Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – induced ROS/NF-κB signaling in monocytes. Cell Signal [Internet]. 2022 Sep 1;97:110372. Available from: <URL>.
  • 29. Naganagowda G, Meijboom R, Petsom A. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety. Adv Chem [Internet]. 2014 Jul 21;2014(1):1–9. Available from: <URL>.
  • 30. Ul-Haq Z, Khan A, Ashraf S, Morales-Bayuelo A. Quantum mechanics and 3D-QSAR studies on thienopyridine analogues: inhibitors of IKKβ. Heliyon [Internet]. 2020 Jun 1;6(6):e04125. Available from: <URL>.
  • 31. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem [Internet]. 1996 Apr;17(5–6):490–519. Available from: <URL>.
  • 32. Haider S, Barakat A, Ul-Haq Z. Discovery of Potential Chemical Probe as Inhibitors of CXCL12 Using Ligand-Based Virtual Screening and Molecular Dynamic Simulation. Molecules [Internet]. 2020 Oct 20;25(20):4829. Available from: <URL>.
  • 33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem [Internet]. 2004 Oct 1;25(13):1605–12. Available from: <URL>.
  • 34. Ali M, Barakat A, El-Faham A, Al-Rasheed HH, Dahlous K, Al-Majid AM, et al. Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evaluation of their α-glucosidase inhibitory and anti-glycation activity. J Enzyme Inhib Med Chem [Internet]. 2020 Jan 1;35(1):692–701. Available from: <URL>.
Year 2024, , 1255 - 1266, 30.08.2024
https://doi.org/10.18596/jotcsa.1402128

Abstract

References

  • 1. Ahmad S, Moinuddin, Dixit K, Shahab U, Alam K, Ali A. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem Biophys Res Commun [Internet]. 2011 Apr 15;407(3):568–74. Available from: <URL>.
  • 2. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells [Internet]. 2022 Apr 12;11(8):1312. Available from: <URL>.
  • 3. Lin J, Wu C, Lu C, Hsia S, Yen G. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res [Internet]. 2016 Aug 25;60(8):1850–64. Available from: <URL>.
  • 4. Peppa M, Vlassara H. Advanced glycation end products and diabetic complications: A General overview. Hormones [Internet]. 2005;4(1):28–37. Available from: <URL>.
  • 5. International diabetes federation. Diabetes Atlas [Internet]. Brussels: Belgium: International Diabetes Federation; 2015. Available from: <URL>.
  • 6. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal [Internet]. 2017 Jan 1;25(1):84–92. Available from: <URL>.
  • 7. Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med [Internet]. 2021 Sep 7;21(3):415–33. Available from: <URL>.
  • 8. Cade WT. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys Ther [Internet]. 2008 Nov 1;88(11):1322–35. Available from: <URL>.
  • 9. Rondeau P, Bourdon E. The glycation of albumin: Structural and functional impacts. Biochimie [Internet]. 2011 Apr 1;93(4):645–58. Available from: <URL>.
  • 10. Eble AS, Thorpe SR, Baynes JW. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem [Internet]. 1983 Aug 10;258(15):9406–12. Available from: <URL>.
  • 11. Schmidt AM, Yan S Du, Wautier JL, Stern D. Activation of Receptor for Advanced Glycation End Products. Circ Res [Internet]. 1999 Mar 19;84(5):489–97. Available from: <URL>.
  • 12. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract [Internet]. 2014 Feb 1;103(2):137–49. Available from: <URL>.
  • 13. Vlassara H, Uribarri J. Glycoxidation and Diabetic Complications: Modern Lessons and a Warning? Rev Endocr Metab Disord [Internet]. 2004 Aug;5(3):181–8. Available from: <URL>.
  • 14. O’Brien J, Morrissey PA, Ames JM. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr [Internet]. 1989 Jan 1;28(3):211–48. Available from: <URL>.
  • 15. Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. Pharm Biol [Internet]. 2016 Feb 8;54(2):198–206. Available from: <URL>.
  • 16. Ahmad S, Shahab U, Baig MH, Khan MS, Khan MS, Srivastava AK, et al. Inhibitory Effect of Metformin and Pyridoxamine in the Formation of Early, Intermediate and Advanced Glycation End-Products. Agarwal PK, editor. PLoS One [Internet]. 2013 Sep 4;8(9):e72128. Available from: <URL>.
  • 17. Ahmad S, Khan MS, Akhter F, Khan MS, Khan A, Ashraf JM, et al. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology [Internet]. 2014 Nov 1;24(11):979–90. Available from: <URL>.
  • 18. Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs [Internet]. 2008 Sep 2;13(3):447–63. Available from: <URL>.
  • 19. da Silva CM, da Silva DL, Modolo L V., Alves RB, de Resende MA, Martins CVB, et al. Schiff bases: A short review of their antimicrobial activities. J Adv Res [Internet]. 2011 Jan 1;2(1):1–8. Available from: <URL>.
  • 20. Neelakantan M, Esakkiammal M, Mariappan S, Dharmaraja J, Jeyakumar T. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes. Indian J Pharm Sci [Internet]. 2010 Feb 1;72(2):216–22. Available from: <URL>.
  • 21. Liang C, Xia J, Lei D, Li X, Yao Q, Gao J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur J Med Chem [Internet]. 2014 Mar 3;74:742–50. Available from: <URL>.
  • 22. Fugu MB, Ndahi NP, Paul BB, Mustapha AN. Synthesis, characterization, and antimicrobial studies of some vanillin schiff base metal (II) complexes. Available online www.jocpr.com J Chem Pharm Res [Internet]. 2013;5(4):22–8. Available from: <URL>.
  • 23. Song WJ, Cheng JP, Jiang DH, Guo L, Cai MF, Yang HB, et al. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Mar 5;121:70–6. Available from: <URL>.
  • 24. Jhaumeer-Laulloo S, Gupta Bhowon M, Mungur S, Fawzi Mahomoodally M, Hussein Subratty A. In vitro Anti-glycation and Anti-oxidant Properties of Synthesized Schiff Bases. Med Chem (Los Angeles) [Internet]. 2012;8(3):409–14. Available from: <URL>.
  • 25. Rakshit S, Lakshminarasimhan T, Guturi S, Kanagavel K, Kanusu UR, Niyogi AG, et al. Nitration Using Fuming HNO 3 in Sulfolane: Synthesis of 6-Nitrovanillin in Flow Mode. Org Process Res Dev [Internet]. 2018 Mar 16;22(3):391–8. Available from: <URL>.
  • 26. Ribeiro TS, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Heise N, Freire de Lima ME. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett [Internet]. 2004 Jul 5;14(13):3555–8. Available from: <URL>.
  • 27. Shah MS, Rahman MM, Islam MD, Al-Macktuf A, Ahmed JU, Nishino H, et al. Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. J Mol Struct [Internet]. 2022 Jan 15;1248:131465. Available from: <URL>.
  • 28. Jahan H, Siddiqui NN, Iqbal S, Basha FZ, Shaikh S, Pizzi M, et al. Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – induced ROS/NF-κB signaling in monocytes. Cell Signal [Internet]. 2022 Sep 1;97:110372. Available from: <URL>.
  • 29. Naganagowda G, Meijboom R, Petsom A. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety. Adv Chem [Internet]. 2014 Jul 21;2014(1):1–9. Available from: <URL>.
  • 30. Ul-Haq Z, Khan A, Ashraf S, Morales-Bayuelo A. Quantum mechanics and 3D-QSAR studies on thienopyridine analogues: inhibitors of IKKβ. Heliyon [Internet]. 2020 Jun 1;6(6):e04125. Available from: <URL>.
  • 31. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem [Internet]. 1996 Apr;17(5–6):490–519. Available from: <URL>.
  • 32. Haider S, Barakat A, Ul-Haq Z. Discovery of Potential Chemical Probe as Inhibitors of CXCL12 Using Ligand-Based Virtual Screening and Molecular Dynamic Simulation. Molecules [Internet]. 2020 Oct 20;25(20):4829. Available from: <URL>.
  • 33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem [Internet]. 2004 Oct 1;25(13):1605–12. Available from: <URL>.
  • 34. Ali M, Barakat A, El-Faham A, Al-Rasheed HH, Dahlous K, Al-Majid AM, et al. Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evaluation of their α-glucosidase inhibitory and anti-glycation activity. J Enzyme Inhib Med Chem [Internet]. 2020 Jan 1;35(1):692–701. Available from: <URL>.
There are 34 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis, Organic Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Sajjad Anjum

Priya Tufail 0000-0002-1787-0104

Sajjad Haider 0000-0001-5306-3302

Taibi Ben-hadda 0000-0002-5633-6203

Asad Ullah 0000-0002-5885-3386

Sabira Begum 0000-0002-1173-2413

Humera Jahan 0000-0003-2052-9190

Zaheer Ul-haq 0000-0002-8530-8711

Bina Siddiqui 0000-0001-8160-0021

Early Pub Date July 25, 2024
Publication Date August 30, 2024
Submission Date January 4, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024

Cite

Vancouver Anjum S, Tufail P, Haider S, Ben-hadda T, Ullah A, Begum S, Jahan H, Ul-haq Z, Siddiqui B. Synthesis, Biological Evaluation, and Molecular Docking Studies of New Nitro Vanillin Analogues as Anti-glycating Agents. JOTCSA. 2024;11(3):1255-66.