Research Article
BibTex RIS Cite

Digital Image Colorimetric Detection of H2O2 Utilizing PEG/Ag/AgO Nanoparticles Derived from Tangerine Leaf Extract

Year 2024, , 1303 - 1312, 30.08.2024
https://doi.org/10.18596/jotcsa.1439951

Abstract

Recent developments in biosensors based on digital platforms have primarily focused on enhancing rapid detection, flexibility, and selectivity through the utilization of nanomaterials. Despite these advances, the complexity of image colorimetric measurements continues to be a subject of interest. This study focused on the development of a new digital image colorimetric biosensor for real-time quantification of hydrogen peroxide (H2O2). The designed nanostructure-based sensor showed excellent selectivity and sensitivity, utilizing polyethylene glycol/Silver/Silver(II) oxide nanoparticles obtained from tangerine leaf extract (TLE/PEG/Ag/AgO NPs). The sensor's performance was validated using Ag/AgO NPs derived from tangerine leaf extract (TLE), demonstrating remarkable selectivity and sensitivity using a Red-Green-Blue (RGB)--based approach. Based on digital image colorimetric measurements of TLE/PEG/Ag/AgO NPs, a system for determining H2O2 was established in a linear range of 2.0–100.0 μmol/L with a low limit of detection (LOD) of 1.82 μmol/L. This study not only presented a facile strategy for the design of the digital image colorimetric TLE/PEG/Ag/AgO NPs-based biosensor but also shed light on the remarkable potential of smartphone sensing devices based on nanosensor technology. These sensors offer fresh perspectives and multidisciplinary approaches to visually sensitive sensing in a range of applications, such as biomedical diagnostics, security screening, and environmental monitoring.

References

  • 1. Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chem Lett [Internet]. 2023 Apr;34(4):107527. Available from: <URL>.
  • 2. Qanash H, Bazaid AS, Alharazi T, Barnawi H, Alotaibi K, Shater ARM, et al. Bioenvironmental applications of myco-created bioactive zinc oxide nanoparticle-doped selenium oxide nanoparticles. Biomass Convers Biorefinery [Internet]. 2024 Aug 1;14(15):17341–52. Available from: <URL>.
  • 3. Lu N, Shao C, Li X, Miao F, Wang K, Liu Y. CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram Int [Internet]. 2016 Jul;42(9):11285–93. Available from: <URL>.
  • 4. Zhang W, Hong C, Pan C. Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol Rapid Commun [Internet]. 2019 Jan 2;40(2):1800279. Available from: <URL>.
  • 5. Hulsey S, Absar S, Choi H. Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nanofibers. J Manuf Process [Internet]. 2018 Aug;34:776–84. Available from: <URL>.
  • 6. Afzali M, Mostafavi A, Shamspur T. Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens Bioelectron [Internet]. 2019 Oct;143:111620. Available from: <URL>.
  • 7. Alavi M, Varma RS. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustain Chem Pharm [Internet]. 2021 Jun;21:100412. Available from: <URL>.
  • 8. Shashiraj KN, Hugar A, Kumar RS, Rudrappa M, Bhat MP, Almansour AI, et al. Exploring the Antimicrobial, Anticancer, and Apoptosis Inducing Ability of Biofabricated Silver Nanoparticles Using Lagerstroemia speciosa Flower Buds against the Human Osteosarcoma (MG-63) Cell Line via Flow Cytometry. Bioengineering [Internet]. 2023 Jul 10;10(7):821. Available from: <URL>.
  • 9. Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta [Internet]. 2019 Aug;200:218–27. Available from: <URL>.
  • 10. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, et al. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano [Internet]. 2013 Apr 23;7(4):3540–6. Available from: <URL>.
  • 11. Ghosh G. Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. Sensors Int [Internet]. 2020;1:100050. Available from: <URL>.
  • 12. Gholami M, Koivisto B. A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion. Appl Surf Sci [Internet]. 2019 Feb;467–468:112–8. Available from: <URL>.
  • 13. Teodoro KBR, Migliorini FL, Christinelli WA, Correa DS. Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles. Carbohydr Polym [Internet]. 2019 May;212:235–41. Available from: <URL>.
  • 14. Ismail M, Khan MI, Akhtar K, Khan MA, Asiri AM, Khan SB. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys E Low-dimensional Syst Nanostructures [Internet]. 2018 Sep;103:367–76. Available from: <URL>.
  • 15. Mohammed GM, Hawar SN. Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. Ali S, editor. Int J Biomater [Internet]. 2022 Sep 19;2022:4136641. Available from: <URL>.
  • 16. Judith Vijaya J, Jayaprakash N, Kombaiah K, Kaviyarasu K, John Kennedy L, Jothi Ramalingam R, et al. Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies. J Photochem Photobiol B Biol [Internet]. 2017 Dec;177:62–8. Available from: <URL>.
  • 17. Aldosary SK, El-Rahman SNA, Al-Jameel SS, Alromihi NM. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Brazilian J Biol [Internet]. 2023;83:e244675. Available from: <URL>.
  • 18. Hambardzumyan S, Sahakyan N, Petrosyan M, Nasim MJ, Jacob C, Trchounian A. Origanum vulgare L. extract-mediated synthesis of silver nanoparticles, their characterization and antibacterial activities. AMB Express [Internet]. 2020 Dec 5;10(1):162. Available from: <URL>.
  • 19. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf [Internet]. 2014 Oct;108:335–9. Available from: <URL>.
  • 20. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN. Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostructures [Internet]. 2010;5(2):483–9. Available from: <URL>.
  • 21. He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv [Internet]. 2017;7(63):39842–51. Available from: <URL>.
  • 22. Malabadi RB, Mulgund GS, Meti NT, Nataraja K, Vijaya Kumar S. Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoria ternatea. Res Pharm [Internet]. 2012;2(4):10–21. Available from: <URL>.
  • 23. Anushaa A, Pushpa A, Vijaya KG, Thippareddy K. Green synthesis of non-cytotoxic silver nanoparticles using Solanum nigrum leaves extract with antibacterial properties. GSC Biol Pharm Sci [Internet]. 2021 Jun 30;15(3):262–71. Available from: <URL>.
  • 24. Lu L, Zhuang Z, Fan M, Liu B, Yang Y, Huang J, et al. Green formulation of Ag nanoparticles by Hibiscus rosa-sinensis: Introducing a navel chemotherapeutic drug for the treatment of liver cancer. Arab J Chem [Internet]. 2022 Feb;15(2):103602. Available from: <URL>.
  • 25. Zayed MF, Mahfoze RA, El-kousy SM, Al-Ashkar EA. In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2020 Jan;585:124167. Available from: <URL>.
  • 26. Yasmin H. M, Veerendra C. Y. Synthesis of Coccinia grandis (L.) Voigt extract’s silver nanoparticles and it’s in vitro antidiabetic activity. J Appl Pharm Sci [Internet]. 2021 Aug 5;11(8):108–15. Available from: <URL>.
  • 27. Renuka R, Devi KR, Sivakami M, Thilagavathi T, Uthrakumar R, Kaviyarasu K. Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatal Agric Biotechnol [Internet]. 2020 Mar;24:101567. Available from: <URL>.
  • 28. Niluxsshun MCD, Masilamani K, Mathiventhan U. Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus tangerina, Citrus sinensis, and Citrus limon for Antibacterial Activities. Ciccarella G, editor. Bioinorg Chem Appl [Internet]. 2021 Feb 2;2021:695734. Available from: <URL>.
  • 29. Hussain M, Raja NI, Mashwani Z, Naz F, Iqbal M, Aslam S. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata. IET Nanobiotechnology [Internet]. 2018 Jun 21;12(4):514–9. Available from: <URL>.
  • 30. Mogole L, Omwoyo W, Viljoen E, Moloto M. Green synthesis of silver nanoparticles using aqueous extract of Citrus sinensis peels and evaluation of their antibacterial efficacy. Green Process Synth [Internet]. 2021 Dec 7;10(1):851–9. Available from: <URL>.
  • 31. Basavegowda N, Rok Lee Y. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization. Mater Lett [Internet]. 2013 Oct;109:31–3. Available from: <URL>.
  • 32. Sekkat A, Liedke MO, Nguyen VH, Butterling M, Baiutti F, Sirvent Veru J de D, et al. Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape. Nat Commun [Internet]. 2022 Sep 9;13(1):5322. Available from: <URL>.
  • 33. Engel L, Benito-Altamirano I, Tarantik KR, Pannek C, Dold M, Prades JD, et al. Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sensors Actuators B Chem [Internet]. 2021 Mar;330:129281. Available from: <URL>.
  • 34. Thompson NBA, O’Sullivan SE, Howell RJ, Bailey DJ, Gilbert MR, Hyatt NC. Objective colour analysis from digital images as a nuclear forensic tool. Forensic Sci Int [Internet]. 2021 Feb;319:110678. Available from: <URL>.
  • 35. Karakuş S, Özbaş F, Baytemir G, Taşaltın N. Cubic-shaped corylus colurna extract coated Cu2O nanoparticles-based smartphone biosensor for the detection of ascorbic acid in real food samples. Food Chem [Internet]. 2023 Aug;417:135918. Available from: <URL>.
  • 36. Boughendjioua H, Mezedjeri NEH, Idjouadiene I. Chemical constituents of Algerian mandarin ( Citrus reticulata ) essential oil by GC-MS and FT-IR analysis. Curr Issues Pharm Med Sci [Internet]. 2020 Dec 1;33(4):197–201. Available from: <URL>.
  • 37. Georgieva M, Gospodinova Z, Keremidarska-Markova M, Kamenska T, Gencheva G, Krasteva N. PEGylated Nanographene Oxide in Combination with Near-Infrared Laser Irradiation as a Smart Nanocarrier in Colon Cancer Targeted Therapy. Pharmaceutics [Internet]. 2021 Mar 22;13(3):424. Available from: <URL>.
  • 38. Rita A, Sivakumar A, Dhas SSJ, Dhas SAMB. Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J Nanostructure Chem [Internet]. 2020 Dec 24;10(4):309–16. Available from: <URL>.
  • 39. Bhagyaraj S, Krupa I. Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability. Molecules [Internet]. 2020 Jan 21;25(3):435. Available from: <URL>.
  • 40. Jaiswal KK, Banerjee I, Dutta S, Verma R, Gunti L, Awasthi S, et al. Microwave-assisted polycrystalline Ag/AgO/AgCl nanocomposites synthesis using banana corm (rhizome of Musa sp.) extract: Characterization and antimicrobial studies. J Ind Eng Chem [Internet]. 2022 Mar;107:145–54. Available from: <URL>.
  • 41. Zhan B, Liu C, Shi H, Li C, Wang L, Huang W, et al. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene. Appl Phys Lett [Internet]. 2014 Jun 16;104(24):243704. Available from: <URL>.
  • 42. Kumar V, Gupta RK, Gundampati RK, Singh DK, Mohan S, Hasan SH, et al. Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle–reduced graphene oxide–polyaniline fabricated electrochemical sensor. RSC Adv [Internet]. 2018;8(2):619–31. Available from: <URL>.
  • 43. Dodevska T, Vasileva I, Denev P, Karashanova D, Georgieva B, Kovacheva D, et al. Rosa damascena waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanillin. Mater Chem Phys [Internet]. 2019 Jun;231:335–43. Available from: <URL>.
  • 44. Tian Y, Wang F, Liu Y, Pang F, Zhang X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta [Internet]. 2014 Nov;146:646–53. Available from: <URL>.
  • 45. Moradi Golsheikh A, Huang NM, Lim HN, Zakaria R, Yin CY. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon N Y [Internet]. 2013 Oct;62:405–12. Available from: <URL>.
  • 46. Ensafi AA, Rezaloo F, Rezaei B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sensors Actuators B Chem [Internet]. 2016 Aug;231:239–44. Available from: <URL>.
  • 47. Wang H, Wang H, Li T, Ma J, Li K, Zuo X. Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sensors Actuators B Chem [Internet]. 2017 Feb;239:1205–12. Available from: <URL>.
  • 48. Zhao W, Wang H, Qin X, Wang X, Zhao Z, Miao Z, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta [Internet]. 2009 Dec 15;80(2):1029–33. Available from: <URL>.
  • 49. Yusoff N, Rameshkumar P, Mehmood MS, Pandikumar A, Lee HW, Huang NM. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens Bioelectron [Internet]. 2017 Jan;87:1020–8. Available from: <URL>.
  • 50. Lorestani F, Shahnavaz Z, Mn P, Alias Y, Manan NSA. One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sensors Actuators B Chem [Internet]. 2015 Mar;208:389–98. Available from: <URL>.
  • 51. Ma J, Bai W, Zheng J. Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta [Internet]. 2019 Jul 27;186(7):482. Available from: <URL>.
  • 52. Habibi B, Jahanbakhshi M. Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J Iran Chem Soc [Internet]. 2015 Aug 4;12(8):1431–8. Available from: <URL>.
  • 53. Han Q, Ni P, Liu Z, Dong X, Wang Y, Li Z, et al. Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles. Electrochem commun [Internet]. 2014 Jan;38:110–3. Available from: <URL>.
  • 54. Wang F, Han R, Liu G, Chen H, Ren T, Yang H, et al. Construction of polydopamine/silver nanoparticles multilayer film for hydrogen peroxide detection. J Electroanal Chem [Internet]. 2013 Oct;706:102–7. Available from: <URL>.
  • 55. Wang W, Xie Y, Xia C, Du H, Tian F. Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing. Microchim Acta [Internet]. 2014 Aug 27;181(11–12):1325–31. Available from: <URL>.
  • 56. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta [Internet]. 2006 Jan;557(1–2):78–84. Available from: <URL>.
  • 57. Chu Y, Huang Z, Wang X, Zhou M, Zhao F. Highly dispersed silver imbedded into TiN submicrospheres for electrochemical detecting of hydrogen peroxide. Sci Rep [Internet]. 2020 Dec 17;10(1):22126. Available from: <URL>.
  • 58. Zhang S, Sheng Q, Zheng J. Synthesis of Ag–HNTs–MnO2 nanocomposites and their application for nonenzymatic hydrogen peroxide electrochemical sensing. RSC Adv [Internet]. 2015;5(34):26878–85. Available from: <URL>.
Year 2024, , 1303 - 1312, 30.08.2024
https://doi.org/10.18596/jotcsa.1439951

Abstract

References

  • 1. Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chem Lett [Internet]. 2023 Apr;34(4):107527. Available from: <URL>.
  • 2. Qanash H, Bazaid AS, Alharazi T, Barnawi H, Alotaibi K, Shater ARM, et al. Bioenvironmental applications of myco-created bioactive zinc oxide nanoparticle-doped selenium oxide nanoparticles. Biomass Convers Biorefinery [Internet]. 2024 Aug 1;14(15):17341–52. Available from: <URL>.
  • 3. Lu N, Shao C, Li X, Miao F, Wang K, Liu Y. CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram Int [Internet]. 2016 Jul;42(9):11285–93. Available from: <URL>.
  • 4. Zhang W, Hong C, Pan C. Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol Rapid Commun [Internet]. 2019 Jan 2;40(2):1800279. Available from: <URL>.
  • 5. Hulsey S, Absar S, Choi H. Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nanofibers. J Manuf Process [Internet]. 2018 Aug;34:776–84. Available from: <URL>.
  • 6. Afzali M, Mostafavi A, Shamspur T. Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens Bioelectron [Internet]. 2019 Oct;143:111620. Available from: <URL>.
  • 7. Alavi M, Varma RS. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustain Chem Pharm [Internet]. 2021 Jun;21:100412. Available from: <URL>.
  • 8. Shashiraj KN, Hugar A, Kumar RS, Rudrappa M, Bhat MP, Almansour AI, et al. Exploring the Antimicrobial, Anticancer, and Apoptosis Inducing Ability of Biofabricated Silver Nanoparticles Using Lagerstroemia speciosa Flower Buds against the Human Osteosarcoma (MG-63) Cell Line via Flow Cytometry. Bioengineering [Internet]. 2023 Jul 10;10(7):821. Available from: <URL>.
  • 9. Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta [Internet]. 2019 Aug;200:218–27. Available from: <URL>.
  • 10. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, et al. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano [Internet]. 2013 Apr 23;7(4):3540–6. Available from: <URL>.
  • 11. Ghosh G. Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. Sensors Int [Internet]. 2020;1:100050. Available from: <URL>.
  • 12. Gholami M, Koivisto B. A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion. Appl Surf Sci [Internet]. 2019 Feb;467–468:112–8. Available from: <URL>.
  • 13. Teodoro KBR, Migliorini FL, Christinelli WA, Correa DS. Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles. Carbohydr Polym [Internet]. 2019 May;212:235–41. Available from: <URL>.
  • 14. Ismail M, Khan MI, Akhtar K, Khan MA, Asiri AM, Khan SB. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys E Low-dimensional Syst Nanostructures [Internet]. 2018 Sep;103:367–76. Available from: <URL>.
  • 15. Mohammed GM, Hawar SN. Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. Ali S, editor. Int J Biomater [Internet]. 2022 Sep 19;2022:4136641. Available from: <URL>.
  • 16. Judith Vijaya J, Jayaprakash N, Kombaiah K, Kaviyarasu K, John Kennedy L, Jothi Ramalingam R, et al. Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies. J Photochem Photobiol B Biol [Internet]. 2017 Dec;177:62–8. Available from: <URL>.
  • 17. Aldosary SK, El-Rahman SNA, Al-Jameel SS, Alromihi NM. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Brazilian J Biol [Internet]. 2023;83:e244675. Available from: <URL>.
  • 18. Hambardzumyan S, Sahakyan N, Petrosyan M, Nasim MJ, Jacob C, Trchounian A. Origanum vulgare L. extract-mediated synthesis of silver nanoparticles, their characterization and antibacterial activities. AMB Express [Internet]. 2020 Dec 5;10(1):162. Available from: <URL>.
  • 19. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf [Internet]. 2014 Oct;108:335–9. Available from: <URL>.
  • 20. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN. Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostructures [Internet]. 2010;5(2):483–9. Available from: <URL>.
  • 21. He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv [Internet]. 2017;7(63):39842–51. Available from: <URL>.
  • 22. Malabadi RB, Mulgund GS, Meti NT, Nataraja K, Vijaya Kumar S. Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoria ternatea. Res Pharm [Internet]. 2012;2(4):10–21. Available from: <URL>.
  • 23. Anushaa A, Pushpa A, Vijaya KG, Thippareddy K. Green synthesis of non-cytotoxic silver nanoparticles using Solanum nigrum leaves extract with antibacterial properties. GSC Biol Pharm Sci [Internet]. 2021 Jun 30;15(3):262–71. Available from: <URL>.
  • 24. Lu L, Zhuang Z, Fan M, Liu B, Yang Y, Huang J, et al. Green formulation of Ag nanoparticles by Hibiscus rosa-sinensis: Introducing a navel chemotherapeutic drug for the treatment of liver cancer. Arab J Chem [Internet]. 2022 Feb;15(2):103602. Available from: <URL>.
  • 25. Zayed MF, Mahfoze RA, El-kousy SM, Al-Ashkar EA. In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2020 Jan;585:124167. Available from: <URL>.
  • 26. Yasmin H. M, Veerendra C. Y. Synthesis of Coccinia grandis (L.) Voigt extract’s silver nanoparticles and it’s in vitro antidiabetic activity. J Appl Pharm Sci [Internet]. 2021 Aug 5;11(8):108–15. Available from: <URL>.
  • 27. Renuka R, Devi KR, Sivakami M, Thilagavathi T, Uthrakumar R, Kaviyarasu K. Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatal Agric Biotechnol [Internet]. 2020 Mar;24:101567. Available from: <URL>.
  • 28. Niluxsshun MCD, Masilamani K, Mathiventhan U. Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus tangerina, Citrus sinensis, and Citrus limon for Antibacterial Activities. Ciccarella G, editor. Bioinorg Chem Appl [Internet]. 2021 Feb 2;2021:695734. Available from: <URL>.
  • 29. Hussain M, Raja NI, Mashwani Z, Naz F, Iqbal M, Aslam S. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata. IET Nanobiotechnology [Internet]. 2018 Jun 21;12(4):514–9. Available from: <URL>.
  • 30. Mogole L, Omwoyo W, Viljoen E, Moloto M. Green synthesis of silver nanoparticles using aqueous extract of Citrus sinensis peels and evaluation of their antibacterial efficacy. Green Process Synth [Internet]. 2021 Dec 7;10(1):851–9. Available from: <URL>.
  • 31. Basavegowda N, Rok Lee Y. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization. Mater Lett [Internet]. 2013 Oct;109:31–3. Available from: <URL>.
  • 32. Sekkat A, Liedke MO, Nguyen VH, Butterling M, Baiutti F, Sirvent Veru J de D, et al. Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape. Nat Commun [Internet]. 2022 Sep 9;13(1):5322. Available from: <URL>.
  • 33. Engel L, Benito-Altamirano I, Tarantik KR, Pannek C, Dold M, Prades JD, et al. Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sensors Actuators B Chem [Internet]. 2021 Mar;330:129281. Available from: <URL>.
  • 34. Thompson NBA, O’Sullivan SE, Howell RJ, Bailey DJ, Gilbert MR, Hyatt NC. Objective colour analysis from digital images as a nuclear forensic tool. Forensic Sci Int [Internet]. 2021 Feb;319:110678. Available from: <URL>.
  • 35. Karakuş S, Özbaş F, Baytemir G, Taşaltın N. Cubic-shaped corylus colurna extract coated Cu2O nanoparticles-based smartphone biosensor for the detection of ascorbic acid in real food samples. Food Chem [Internet]. 2023 Aug;417:135918. Available from: <URL>.
  • 36. Boughendjioua H, Mezedjeri NEH, Idjouadiene I. Chemical constituents of Algerian mandarin ( Citrus reticulata ) essential oil by GC-MS and FT-IR analysis. Curr Issues Pharm Med Sci [Internet]. 2020 Dec 1;33(4):197–201. Available from: <URL>.
  • 37. Georgieva M, Gospodinova Z, Keremidarska-Markova M, Kamenska T, Gencheva G, Krasteva N. PEGylated Nanographene Oxide in Combination with Near-Infrared Laser Irradiation as a Smart Nanocarrier in Colon Cancer Targeted Therapy. Pharmaceutics [Internet]. 2021 Mar 22;13(3):424. Available from: <URL>.
  • 38. Rita A, Sivakumar A, Dhas SSJ, Dhas SAMB. Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J Nanostructure Chem [Internet]. 2020 Dec 24;10(4):309–16. Available from: <URL>.
  • 39. Bhagyaraj S, Krupa I. Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability. Molecules [Internet]. 2020 Jan 21;25(3):435. Available from: <URL>.
  • 40. Jaiswal KK, Banerjee I, Dutta S, Verma R, Gunti L, Awasthi S, et al. Microwave-assisted polycrystalline Ag/AgO/AgCl nanocomposites synthesis using banana corm (rhizome of Musa sp.) extract: Characterization and antimicrobial studies. J Ind Eng Chem [Internet]. 2022 Mar;107:145–54. Available from: <URL>.
  • 41. Zhan B, Liu C, Shi H, Li C, Wang L, Huang W, et al. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene. Appl Phys Lett [Internet]. 2014 Jun 16;104(24):243704. Available from: <URL>.
  • 42. Kumar V, Gupta RK, Gundampati RK, Singh DK, Mohan S, Hasan SH, et al. Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle–reduced graphene oxide–polyaniline fabricated electrochemical sensor. RSC Adv [Internet]. 2018;8(2):619–31. Available from: <URL>.
  • 43. Dodevska T, Vasileva I, Denev P, Karashanova D, Georgieva B, Kovacheva D, et al. Rosa damascena waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanillin. Mater Chem Phys [Internet]. 2019 Jun;231:335–43. Available from: <URL>.
  • 44. Tian Y, Wang F, Liu Y, Pang F, Zhang X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta [Internet]. 2014 Nov;146:646–53. Available from: <URL>.
  • 45. Moradi Golsheikh A, Huang NM, Lim HN, Zakaria R, Yin CY. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon N Y [Internet]. 2013 Oct;62:405–12. Available from: <URL>.
  • 46. Ensafi AA, Rezaloo F, Rezaei B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sensors Actuators B Chem [Internet]. 2016 Aug;231:239–44. Available from: <URL>.
  • 47. Wang H, Wang H, Li T, Ma J, Li K, Zuo X. Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sensors Actuators B Chem [Internet]. 2017 Feb;239:1205–12. Available from: <URL>.
  • 48. Zhao W, Wang H, Qin X, Wang X, Zhao Z, Miao Z, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta [Internet]. 2009 Dec 15;80(2):1029–33. Available from: <URL>.
  • 49. Yusoff N, Rameshkumar P, Mehmood MS, Pandikumar A, Lee HW, Huang NM. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens Bioelectron [Internet]. 2017 Jan;87:1020–8. Available from: <URL>.
  • 50. Lorestani F, Shahnavaz Z, Mn P, Alias Y, Manan NSA. One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sensors Actuators B Chem [Internet]. 2015 Mar;208:389–98. Available from: <URL>.
  • 51. Ma J, Bai W, Zheng J. Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta [Internet]. 2019 Jul 27;186(7):482. Available from: <URL>.
  • 52. Habibi B, Jahanbakhshi M. Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J Iran Chem Soc [Internet]. 2015 Aug 4;12(8):1431–8. Available from: <URL>.
  • 53. Han Q, Ni P, Liu Z, Dong X, Wang Y, Li Z, et al. Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles. Electrochem commun [Internet]. 2014 Jan;38:110–3. Available from: <URL>.
  • 54. Wang F, Han R, Liu G, Chen H, Ren T, Yang H, et al. Construction of polydopamine/silver nanoparticles multilayer film for hydrogen peroxide detection. J Electroanal Chem [Internet]. 2013 Oct;706:102–7. Available from: <URL>.
  • 55. Wang W, Xie Y, Xia C, Du H, Tian F. Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing. Microchim Acta [Internet]. 2014 Aug 27;181(11–12):1325–31. Available from: <URL>.
  • 56. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta [Internet]. 2006 Jan;557(1–2):78–84. Available from: <URL>.
  • 57. Chu Y, Huang Z, Wang X, Zhou M, Zhao F. Highly dispersed silver imbedded into TiN submicrospheres for electrochemical detecting of hydrogen peroxide. Sci Rep [Internet]. 2020 Dec 17;10(1):22126. Available from: <URL>.
  • 58. Zhang S, Sheng Q, Zheng J. Synthesis of Ag–HNTs–MnO2 nanocomposites and their application for nonenzymatic hydrogen peroxide electrochemical sensing. RSC Adv [Internet]. 2015;5(34):26878–85. Available from: <URL>.
There are 58 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other), Chemical Engineering (Other)
Journal Section RESEARCH ARTICLES
Authors

Emre Yılmazoğlu 0000-0002-5800-873X

Early Pub Date August 4, 2024
Publication Date August 30, 2024
Submission Date February 19, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2024

Cite

Vancouver Yılmazoğlu E. Digital Image Colorimetric Detection of H2O2 Utilizing PEG/Ag/AgO Nanoparticles Derived from Tangerine Leaf Extract. JOTCSA. 2024;11(3):1303-12.