Research Article
BibTex RIS Cite
Year 2024, , 1111 - 1124, 30.08.2024
https://doi.org/10.18596/jotcsa.1453941

Abstract

References

  • 1. Feng W Bin, Zhu XL, Liu XQ, Fu M Sen, Ma X, Jia SJ, et al. Relaxor nature in Ba5RZr3Nb7O30 (R= La, Nd, Sm) tetragonal tungsten bronze new system. J Am Ceram Soc [Internet]. 2018 Apr 24;101(4):1623–31. Available from: <URL>.
  • 2. Zhu XL, Liu XQ, Chen XM. Crystal Structure and Dielectric Properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) Tungsten Bronze Ceramics. J Am Ceram Soc [Internet]. 2011 Jun;94(6):1829–36. Available from: <URL>.
  • 3. Roulland F, Josse M, Castel E, Maglione M. Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6−2xLn2xFe1+xNb9−xO30 TTB system. Solid State Sci [Internet]. 2009 Sep;11(9):1709–16. Available from: <URL>.
  • 4. Fang L, Peng X, Li C, Hu C, Wu B, Zhou H. Dielectric Properties of Ba4Sm2Fe2M8O30 (M=Nb, Ta) with Tetragonal Bronze Structure. J Am Ceram Soc [Internet]. 2010 Sep 12;93(9):2430–3. Available from: <URL>.
  • 5. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 6. Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chem Commun [Internet]. 2007;(47):5040–2. Available from: <URL>.
  • 7. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 8. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Nov;76(11):6963–74. Available from: <URL>.
  • 10. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov 26;25(6):1757–62. Available from: <URL>.
  • 11. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J Electron Mater [Internet]. 2020 Apr 17;49(4):2436–49. Available from: <URL>.
  • 12. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6 :Dy3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020;22(35):19769–78. Available from: <URL>.
  • 13. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 14. Tressaud A. Structural architecture and physical properties of some inorganic fluoride series: a review. J Fluor Chem [Internet]. 2011 Oct;132(10):651–9. Available from: <URL>.
  • 15. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6 :Dy3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 13;14(6):1134–43. Available from: <URL>.
  • 16. İlhan M, Keskin İÇ. Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors. J Turkish Chem Soc Sect A Chem [Internet]. 2023 May 31;10(2):453–64. Available from: <URL>.
  • 17. Xu T, Zhao X, Zhu Y. Synthesis of Hexagonal BaTa2O6 Nanorods and Influence of Defects on the Photocatalytic Activity. J Phys Chem B [Internet]. 2006 Dec 1;110(51):25825–32. Available from: <URL>.
  • 18. Layden GK. Polymorphism of BaTa2O6. Mater Res Bull [Internet]. 1967 May;2(5):533–9. Available from: <URL>.
  • 19. Keskin İÇ, İlhan M. Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors. J Electron Mater [Internet]. 2023 Aug 31;52(8):5614–30. Available from: <URL>.
  • 20. Layden GK. Dielectric and structure studies of hexagonal BaTa2O6. Mater Res Bull [Internet]. 1968 Apr;3(4):349–59. Available from: <URL>.
  • 21. İlhan M, Mergen A, Sarıoğlu C, Yaman C. Heat capacity measurements on BaTa2O6 and derivation of its thermodynamic functions. J Therm Anal Calorim [Internet]. 2017 May 29;128(2):707–11. Available from: <URL>.
  • 22. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett [Internet]. 1998 Oct;295(5–6):487–92. Available from: <URL>.
  • 23. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 25. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 26. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 27. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 28. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 29. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 30. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 31. Gardner J, Morrison FD. A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes: Ba4R0.67Nb10O30 (R= La, Nd, Sm, Gd, Dy and Y). Dalt Trans [Internet]. 2014;43(30):11687–95. Available from: <URL>.
  • 32. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 33. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M= Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 34. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 35. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 36. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 37. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 38. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 39. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 40. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 41. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 42. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 43. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 44. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 45. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 46. Mach TP, Ding Y, Binder JR. Impact of Particle and Crystallite Size of Ba0.6Sr0.4TiO3 on the Dielectric Properties of BST/P(VDF-TrFE) Composites in Fully Printed Varactors. Polymers (Basel) [Internet]. 2022 Nov 19;14(22):5027. Available from: <URL>.
  • 47. Kurnia, Heriansyah, Suharyadi E. Study on The Influence of Crystal Structure and Grain Size on Dielectric Properties of Manganese Ferrite (MnFe2O4) Nanoparticles. IOP Conf Ser Mater Sci Eng [Internet]. 2017 May;202:012046. Available from: <URL>.
  • 48. Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS. Syntheses, Structures, Second-Harmonic Generating, and Ferroelectric Properties of Tungsten Bronzes:  A6M2M‘8O30 (A= Sr2+, Ba2+, or Pb2+ ; M= Ti4+, Zr4+, or Hf4+ ; M‘= Nb5+ or Ta5+). Chem Mater [Internet]. 2004 Sep 1;16(19):3616–22. Available from: <URL>.
  • 49. Rotaru A, Arnold DC, Daoud-Aladine A, Morrison FD. Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors. Phys Rev B [Internet]. 2011 May 31;83(18):184302. Available from: <URL>.
  • 50. Neurgaonkar RR, Nelson JG, Oliver JR. Ferroelectric properties of the tungsten bronze M2+6M4+2Nb8O30 solid solution systems. Mater Res Bull [Internet]. 1992 Jun;27(6):677–84. Available from: <URL>.
  • 51. Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirk CA, et al. Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys [Internet]. 2007 May 15;101(10):104114. Available from: <URL>.
  • 52. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30. J Solid State Chem [Internet]. 2004 Mar;177(3):875–82. Available from: <URL>.
  • 53. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 54. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 55. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 56. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 57. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
  • 58. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 59. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 60. Chandra Sati P, Arora M, Chauhan S, Kumar M, Chhoker S. Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J Phys Chem Solids [Internet]. 2014 Jan;75(1):105–8. Available from: <URL>.
  • 61. Nadeem M, Khan W, Khan S, Husain S, Ansari A. Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J Appl Phys [Internet]. 2018 Oct 28;124(16):164105. Available from: <URL>.

Structural and Dielectric Properties of RE3+, B3+ co-doped (RE3+=Sm3+, Dy3+) BaTa2O6 Tetragonal Tungsten Bronze-Type Ceramics

Year 2024, , 1111 - 1124, 30.08.2024
https://doi.org/10.18596/jotcsa.1453941

Abstract

In this paper, the effect of boron doping on dielectric properties was investigated using BaTa2O6:xSm3+, yB3+ (x=5 mol%, y= 0, 5, 15, 30, 50, 70, 100 mol%) and BaTa2O6:xDy3+, yB3+ (x=10 mol%, y= 0, 5, 15, 30, 50, 70, 100 mol%) tungsten bronze ceramics fabricated by the conventional solid-state synthesis. XRD (X-ray diffraction) results revealed a single BaTa2O6 phase with space group P4/mbm (127) for both series. Additionally, in both series, there was an increase in crystallite sizes and cell parameters with increasing B3+ concentration. SEM (scanning electron microscopy) examinations indicated that the increase of boron promoted grain growth and grain elongation. In impedance results, in both series, increasing boron concentration up to 100 mol% increased the dielectric constant. Moreover, the presence of boron was associated with a relaxing transition in the B-site substitution of RE3+ (RE=Sm, Dy) ions and a contribution to the dielectric permittivity, while the increase in tetragonality or c/a ratio for both series was ascribed to the increase in the ferroelectric Curie temperature. In both series, a decrease in dielectric loss (tan δ) occurred, which was explained by the increasing sintering temperature effect with increasing boron, reducing the mobility of oxygen vacancies.

References

  • 1. Feng W Bin, Zhu XL, Liu XQ, Fu M Sen, Ma X, Jia SJ, et al. Relaxor nature in Ba5RZr3Nb7O30 (R= La, Nd, Sm) tetragonal tungsten bronze new system. J Am Ceram Soc [Internet]. 2018 Apr 24;101(4):1623–31. Available from: <URL>.
  • 2. Zhu XL, Liu XQ, Chen XM. Crystal Structure and Dielectric Properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) Tungsten Bronze Ceramics. J Am Ceram Soc [Internet]. 2011 Jun;94(6):1829–36. Available from: <URL>.
  • 3. Roulland F, Josse M, Castel E, Maglione M. Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6−2xLn2xFe1+xNb9−xO30 TTB system. Solid State Sci [Internet]. 2009 Sep;11(9):1709–16. Available from: <URL>.
  • 4. Fang L, Peng X, Li C, Hu C, Wu B, Zhou H. Dielectric Properties of Ba4Sm2Fe2M8O30 (M=Nb, Ta) with Tetragonal Bronze Structure. J Am Ceram Soc [Internet]. 2010 Sep 12;93(9):2430–3. Available from: <URL>.
  • 5. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 6. Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chem Commun [Internet]. 2007;(47):5040–2. Available from: <URL>.
  • 7. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 8. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Nov;76(11):6963–74. Available from: <URL>.
  • 10. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov 26;25(6):1757–62. Available from: <URL>.
  • 11. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J Electron Mater [Internet]. 2020 Apr 17;49(4):2436–49. Available from: <URL>.
  • 12. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6 :Dy3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020;22(35):19769–78. Available from: <URL>.
  • 13. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 14. Tressaud A. Structural architecture and physical properties of some inorganic fluoride series: a review. J Fluor Chem [Internet]. 2011 Oct;132(10):651–9. Available from: <URL>.
  • 15. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6 :Dy3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 13;14(6):1134–43. Available from: <URL>.
  • 16. İlhan M, Keskin İÇ. Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors. J Turkish Chem Soc Sect A Chem [Internet]. 2023 May 31;10(2):453–64. Available from: <URL>.
  • 17. Xu T, Zhao X, Zhu Y. Synthesis of Hexagonal BaTa2O6 Nanorods and Influence of Defects on the Photocatalytic Activity. J Phys Chem B [Internet]. 2006 Dec 1;110(51):25825–32. Available from: <URL>.
  • 18. Layden GK. Polymorphism of BaTa2O6. Mater Res Bull [Internet]. 1967 May;2(5):533–9. Available from: <URL>.
  • 19. Keskin İÇ, İlhan M. Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors. J Electron Mater [Internet]. 2023 Aug 31;52(8):5614–30. Available from: <URL>.
  • 20. Layden GK. Dielectric and structure studies of hexagonal BaTa2O6. Mater Res Bull [Internet]. 1968 Apr;3(4):349–59. Available from: <URL>.
  • 21. İlhan M, Mergen A, Sarıoğlu C, Yaman C. Heat capacity measurements on BaTa2O6 and derivation of its thermodynamic functions. J Therm Anal Calorim [Internet]. 2017 May 29;128(2):707–11. Available from: <URL>.
  • 22. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett [Internet]. 1998 Oct;295(5–6):487–92. Available from: <URL>.
  • 23. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 25. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 26. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 27. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 28. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 29. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 30. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 31. Gardner J, Morrison FD. A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes: Ba4R0.67Nb10O30 (R= La, Nd, Sm, Gd, Dy and Y). Dalt Trans [Internet]. 2014;43(30):11687–95. Available from: <URL>.
  • 32. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 33. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M= Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 34. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 35. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 36. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 37. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 38. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 39. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 40. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 41. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 42. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 43. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 44. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 45. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 46. Mach TP, Ding Y, Binder JR. Impact of Particle and Crystallite Size of Ba0.6Sr0.4TiO3 on the Dielectric Properties of BST/P(VDF-TrFE) Composites in Fully Printed Varactors. Polymers (Basel) [Internet]. 2022 Nov 19;14(22):5027. Available from: <URL>.
  • 47. Kurnia, Heriansyah, Suharyadi E. Study on The Influence of Crystal Structure and Grain Size on Dielectric Properties of Manganese Ferrite (MnFe2O4) Nanoparticles. IOP Conf Ser Mater Sci Eng [Internet]. 2017 May;202:012046. Available from: <URL>.
  • 48. Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS. Syntheses, Structures, Second-Harmonic Generating, and Ferroelectric Properties of Tungsten Bronzes:  A6M2M‘8O30 (A= Sr2+, Ba2+, or Pb2+ ; M= Ti4+, Zr4+, or Hf4+ ; M‘= Nb5+ or Ta5+). Chem Mater [Internet]. 2004 Sep 1;16(19):3616–22. Available from: <URL>.
  • 49. Rotaru A, Arnold DC, Daoud-Aladine A, Morrison FD. Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors. Phys Rev B [Internet]. 2011 May 31;83(18):184302. Available from: <URL>.
  • 50. Neurgaonkar RR, Nelson JG, Oliver JR. Ferroelectric properties of the tungsten bronze M2+6M4+2Nb8O30 solid solution systems. Mater Res Bull [Internet]. 1992 Jun;27(6):677–84. Available from: <URL>.
  • 51. Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirk CA, et al. Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys [Internet]. 2007 May 15;101(10):104114. Available from: <URL>.
  • 52. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30. J Solid State Chem [Internet]. 2004 Mar;177(3):875–82. Available from: <URL>.
  • 53. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 54. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 55. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 56. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 57. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
  • 58. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 59. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 60. Chandra Sati P, Arora M, Chauhan S, Kumar M, Chhoker S. Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J Phys Chem Solids [Internet]. 2014 Jan;75(1):105–8. Available from: <URL>.
  • 61. Nadeem M, Khan W, Khan S, Husain S, Ansari A. Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J Appl Phys [Internet]. 2018 Oct 28;124(16):164105. Available from: <URL>.
There are 61 citations in total.

Details

Primary Language English
Subjects Inorganic Materials, Physical Properties of Materials
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Mehmet İsmail Katı 0000-0002-9225-730X

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Early Pub Date July 12, 2024
Publication Date August 30, 2024
Submission Date March 16, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024

Cite

Vancouver İlhan M, Katı Mİ, Güleryüz LF. Structural and Dielectric Properties of RE3+, B3+ co-doped (RE3+=Sm3+, Dy3+) BaTa2O6 Tetragonal Tungsten Bronze-Type Ceramics. JOTCSA. 2024;11(3):1111-24.