BibTex RIS Cite

PREPARATION OF TiO2/PERLITE COMPOSITES BY USING 23-1 FRACTIONAL FACTORIAL DESIGN

Year 2016, , 299 - 312, 08.01.2017
https://doi.org/10.18596/jotcsa.30978

Abstract

Successive impregnation and calcination process was performed in order to produce TiO2/perlite composites. 23-1 fractional factorial design was first applied to optimize the production conditions of TiO2/perlite photocatalysts. Seven TiO2/perlite composites (including three central point experiments) were produced by manipulating three process parameters (amount of TiO2 used in impregnation process, particle size of perlite and calcination temperature). Prepared TiO2/perlite photocatalysts were characterized by        X-Ray Diffraction Spectrometer and SEM. XRD patterns indicated that anatase was the main crystalline phase for all produced samples. Degradation capacities of produced TiO2/perlite composites were investigated in methylene blue degradation process. The linear models of TiO2 loading (%) and methylene blue degradation (%) of TiO2/perlite composites were developed by regression analysis of the experimental data. As a result of analysis of variance, it was found that developed models were statistically significant with the p-value of 0.0040 and 0.0003, for TiO2 loading (%) and methylene blue degradation (%), respectively. According to the coefficient of determination (0.9821 and 0.9970 for the models of TiO2 loading and methylene blue degradation, respectively) and error analysis, developed models fit well to the experimental data. Effect of process parameters was investigated by using response surface plots. Amount of TiO2 and particle size were found as the most effective parameters on both TiO2 loading (%) and degradation efficiency (%). Calcination temperature did not affect TiO2 loading but methylene blue degradation capacity.

References

  • Shan AY, Ghazi TIM, Rashid SA. Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: Gen. 2010; 389: 1-8. DOI:10.1016/j.apcata.2010.08.053.
  • Shavisi Y, Sharifnia S, Hosseini SB, Khadivia MA. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. Journal of Industrial and Engineering Chemistry 2014; 20(1):278-283. DOI:10.1016/j.jiec.2013.03.037.
  • Y. Shavisi Y, Sharifnia s, Zendehzaban, M, Mirghavami ML, Kakehazar S. Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. Journal of Industrial and Engineering Chemistry 2014; 20(5): Pages 2806-2813. DOI:10.1016/j.jiec.2013.11.011.
  • Długosz M, Zmudzki P, Kwiecien A, Szczubiałka K, Krzek J, Nowakowska M. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. Journal of Hazardous Materials 2015;298:146-153. DOI:10.1016/j.jhazmat.2015.05.016.
  • Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V. Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chemical Engineering Journal 2013;224:106-113. DOI:10.1016/j.cej.2013.01.066.
  • Hosseini SN, Borghei SM, Vossoughi V, TaghaviniA N. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal. B: Environ. 2007;74;53-62. DOI:10.1016/j.apcatb.2006.12.015.
  • Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F. Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean Journal of Chemical Engineering 2011;28(2):531-538. DOI:10.1007/s11814-010-0355-8.
  • Faramarzpour M, Vossoughi M, Borghei M. Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chemical Engineering Journal 2009;146:79-85. DOI:10.1016/j.cej.2008.05.033.
  • Sakkas VA, Islam MdA, Stalikas C, Albanis TA. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation. Journal of Hazardous Materials 2010;175:33-44. DOI:10.1016/j.jhazmat.2009.10.050.
  • Jiang W, Joens JA, Dionysiou DD, O’Shea DE. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate . Journal of Photochemistry and Photobiology A: Chemistry 2013;262:7-13. DOI:10.1016/j.jphotochem.2013.04.008.
  • Chen J, Li G, Huang Y, Zhang H, Zhao H. An T. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental 2012;123-124:69-77. DOI:10.1016/j.apcatb.2012.04.020.
  • Alijani S, Vaez M, Moghaddam AZ. Optimization of synthesis parameters in photodegradation of acid red 73 using TiO2 nanoparticles prepared by the modified sol-gel method. International Journal of Environmental Science and Development 2014;5(1):108-113. DOI:10.7763/IJESD.2014.V5.460.
  • Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström A, Pettersen J, Bergman R. Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems 1998;42(1):3-40. DOI:10.1016/S0169-7439(98)00065-3.
  • Ohno T, Sarukawa K, Tokieda K, Matsumura M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis 2001;203:82-86. DOI:10.1006/jcat.2001.3316.
Year 2016, , 299 - 312, 08.01.2017
https://doi.org/10.18596/jotcsa.30978

Abstract

References

  • Shan AY, Ghazi TIM, Rashid SA. Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: Gen. 2010; 389: 1-8. DOI:10.1016/j.apcata.2010.08.053.
  • Shavisi Y, Sharifnia S, Hosseini SB, Khadivia MA. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. Journal of Industrial and Engineering Chemistry 2014; 20(1):278-283. DOI:10.1016/j.jiec.2013.03.037.
  • Y. Shavisi Y, Sharifnia s, Zendehzaban, M, Mirghavami ML, Kakehazar S. Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. Journal of Industrial and Engineering Chemistry 2014; 20(5): Pages 2806-2813. DOI:10.1016/j.jiec.2013.11.011.
  • Długosz M, Zmudzki P, Kwiecien A, Szczubiałka K, Krzek J, Nowakowska M. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. Journal of Hazardous Materials 2015;298:146-153. DOI:10.1016/j.jhazmat.2015.05.016.
  • Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V. Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chemical Engineering Journal 2013;224:106-113. DOI:10.1016/j.cej.2013.01.066.
  • Hosseini SN, Borghei SM, Vossoughi V, TaghaviniA N. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal. B: Environ. 2007;74;53-62. DOI:10.1016/j.apcatb.2006.12.015.
  • Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F. Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean Journal of Chemical Engineering 2011;28(2):531-538. DOI:10.1007/s11814-010-0355-8.
  • Faramarzpour M, Vossoughi M, Borghei M. Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chemical Engineering Journal 2009;146:79-85. DOI:10.1016/j.cej.2008.05.033.
  • Sakkas VA, Islam MdA, Stalikas C, Albanis TA. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation. Journal of Hazardous Materials 2010;175:33-44. DOI:10.1016/j.jhazmat.2009.10.050.
  • Jiang W, Joens JA, Dionysiou DD, O’Shea DE. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate . Journal of Photochemistry and Photobiology A: Chemistry 2013;262:7-13. DOI:10.1016/j.jphotochem.2013.04.008.
  • Chen J, Li G, Huang Y, Zhang H, Zhao H. An T. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental 2012;123-124:69-77. DOI:10.1016/j.apcatb.2012.04.020.
  • Alijani S, Vaez M, Moghaddam AZ. Optimization of synthesis parameters in photodegradation of acid red 73 using TiO2 nanoparticles prepared by the modified sol-gel method. International Journal of Environmental Science and Development 2014;5(1):108-113. DOI:10.7763/IJESD.2014.V5.460.
  • Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström A, Pettersen J, Bergman R. Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems 1998;42(1):3-40. DOI:10.1016/S0169-7439(98)00065-3.
  • Ohno T, Sarukawa K, Tokieda K, Matsumura M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis 2001;203:82-86. DOI:10.1006/jcat.2001.3316.
There are 14 citations in total.

Details

Journal Section Articles
Authors

Dilek Duranoğlu

Publication Date January 8, 2017
Submission Date July 16, 2016
Published in Issue Year 2016

Cite

Vancouver Duranoğlu D. PREPARATION OF TiO2/PERLITE COMPOSITES BY USING 23-1 FRACTIONAL FACTORIAL DESIGN. JOTCSA. 2017;3(3):299-312.